首页> 外文期刊>Pattern Analysis and Applications >SIFT-based iris recognition revisited: prerequisites, advantages and improvements
【24h】

SIFT-based iris recognition revisited: prerequisites, advantages and improvements

机译:基于SIFT的虹膜识别重新审视:先决条件,优势和改进

获取原文
获取原文并翻译 | 示例

摘要

Scale-invariant feature transform (SIFT), which represents a general purpose image descriptor, has been extensively used in the field of biometric recognition. Focusing on iris biometrics, numerous SIFT-based schemes have been presented in past years, offering an alternative approach to traditional iris recognition, which are designed to extract discriminative binary feature vectors based on an analysis of pre-processed iris textures. However, the majority of proposed SIFT-based systems fails to maintain the recognition accuracy provided by generic schemes. Moreover, traditional systems outperform SIFT-based approaches with respect to other key system factors, i.e. authentication speed and storage requirement. In this work, we propose a SIFT-based iris recognition system, which circumvents the drawbacks of previous proposals. Prerequisites, derived from an analysis of the nature of iris biometric data, are utilized to construct an improved SIFT-based baseline iris recognition scheme, which operates on normalized enhanced iris textures obtained from near-infrared iris images. Subsequently, different binarization techniques are introduced and combined to obtain binary SIFT-based feature vectors from detected keypoints and their descriptors. On the CASIAv1, CASIAv4-Interval and BioSecure iris database, the proposed scheme maintains the performance of different traditional systems in terms of recognition accuracy as well as authentication speed. In addition, we show that SIFT-based features complement those extracted by traditional schemes, such that a multi-algorithm fusion at score level yields a significant gain in recognition accuracy.
机译:表示通用图像描述符的尺度不变特征变换(SIFT)已广泛用于生物识别领域。专注于虹膜生物测定学,过去几年介绍了许多基于SIFT的方案,提供了传统的虹膜识别的替代方法,这些方法旨在根据对预处理的虹膜纹理的分析来提取判别二元特征向量。但是,大多数提议的基于SIFT的系统无法维持通用方案提供的识别准确性。此外,传统系统对其他关键系统因素的基于SIFT的方法,即认证速度和存储要求。在这项工作中,我们提出了一种基于筛选的虹膜识别系统,这些系统旨在避免先前提案的缺点。从虹膜生物识别数据的性质进行分析的先决条件用于构建改进的基于基于SIFT的基线IRIS识别方案,其在近红外虹膜图像获得的标准化增强型虹膜纹理上。随后,引入不同的二值化技术并组合以获得来自检测到的键点及其描述符的基于二进制SIFT的特征向量。在CASIAV1,CASIAV4间隔和生物安全虹膜数据库上,所提出的方案在识别准确性和认证速度方面保持不同传统系统的性能。此外,我们表明基于SIFT的特征补充了传统方案提取的特征,使得分数水平的多算法融合产生了显着的识别准确度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号