首页> 外文期刊>Pattern Analysis and Applications >Document representation based on probabilistic word clustering in customer-voice classification
【24h】

Document representation based on probabilistic word clustering in customer-voice classification

机译:客户语音分类中基于概率词聚类的文档表示

获取原文
获取原文并翻译 | 示例

摘要

Customer-voice data have an important role in different fields including marketing, product planning, and quality assurance. However, owing to the manual processes involved, there are problems associated with the classification of customer-voice data. This study focuses on building automatic classifiers for customer-voice data with newly proposed document representation methods based on neural-embedding and probabilistic word-clustering approaches. Semantically similar terms are classified into a common cluster. The words generated from neural embedding are clustered according to the membership strength of each word relative to each cluster derived from a probabilistic clustering method such as the fuzzy C-means clustering method or Gaussian mixture model. It is expected that the proposed method can be suitable for the classification of customer-voice data consisting of unstructured text by considering the membership strength. The results demonstrate that the proposed method achieved an accuracy of 89.24% with respect to representational effectiveness and an accuracy of 87.76% with respect to the classification performance of customer-voice data consisting of 12 classes. Further, the method provided an intuitive interpretation for the generated representation.
机译:客户语音数据在包括营销,产品计划和质量保证在内的不同领域具有重要作用。但是,由于涉及手动过程,因此存在与客户语音数据分类相关的问题。这项研究的重点是使用基于神经嵌入和概率词聚类方法的新提出的文档表示方法,为客户语音数据构建自动分类器。语义上相似的术语被归类为一个公共类。从神经嵌入生成的单词会根据每个单词相对于每个单词的隶属强度进行聚类,这些单词相对于每个单词都是从概率聚类方法(如模糊C均值聚类方法或高斯混合模型)派生的。预期通过考虑成员强度,所提出的方法可以适合于由非结构化文本组成的客户语音数据的分类。结果表明,所提出的方法在代表有效性上达到了89.24%的准确度,而在由12个类别组成的客户语音数据的分类性能上则达到了87.76%的准确度。此外,该方法为生成的表示提供了直观的解释。

著录项

  • 来源
    《Pattern Analysis and Applications》 |2019年第1期|221-232|共12页
  • 作者单位

    Seoul Natl Univ, Dept Ind Engn, 1 Gwanak Ro, Seoul 151742, South Korea|Seoul Natl Univ, Inst Ind Syst Innovat, 1 Gwanak Ro, Seoul 151742, South Korea;

    Seoul Natl Univ, Dept Ind Engn, 1 Gwanak Ro, Seoul 151742, South Korea|Seoul Natl Univ, Inst Ind Syst Innovat, 1 Gwanak Ro, Seoul 151742, South Korea;

    Seoul Natl Univ, Dept Ind Engn, 1 Gwanak Ro, Seoul 151742, South Korea|Seoul Natl Univ, Inst Ind Syst Innovat, 1 Gwanak Ro, Seoul 151742, South Korea;

    LG Elect, Data Driven User Experience Team, Mobile Commun Lab, 56 Digitalro, Seoul 153802, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Probabilistic word clustering; Document representation; Customer-voice; Classification;

    机译:概率词聚类;文档表示;客户语音;分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号