首页> 外文期刊>Pattern Analysis and Applications >Robust hierarchical image representation using non-negative matrix factorisation with sparse code shrinkage preprocessing
【24h】

Robust hierarchical image representation using non-negative matrix factorisation with sparse code shrinkage preprocessing

机译:使用非负矩阵分解和稀疏代码收缩预处理的稳健分层图像表示

获取原文
获取原文并翻译 | 示例

摘要

When analysing patterns, our goals are (ⅰ) to find structure in the presence of noise, (ⅱ) to decompose the observed structure into sub-components, and (ⅲ) to use the components for pattern completion. Here, a novel loop architecture is introduced to perform these tasks in an unsupervised manner. The architecture combines sparse code shrinkage with non-negative matrix factorisation, and blends their favourable properties: sparse code shrinkage aims to remove Gaussian noise in a robust fashion; non-negative matrix factorisation extracts substructures from the noise filtered inputs. The loop architecture performs robust pattern completion when organised into a two-layered hierarchy. We demonstrate the power of the proposed architecture on the so-called 'bar-problem' and on the FERET facial database.
机译:分析图案时,我们的目标是(ⅰ)在有噪声的情况下找到结构,(ⅱ)将观察到的结构分解为子组件,以及(ⅲ)使用这些组件完成图案。这里,介绍了一种新颖的循环体系结构,以无人监督的方式执行这些任务。该体系结构将稀疏代码收缩与非负矩阵分解相结合,并融合了它们的有利特性:稀疏代码收缩旨在以鲁棒的方式消除高斯噪声。非负矩阵分解可从经过噪声滤波的输入中提取子结构。当组织为两层结构时,循环体系结构将执行健壮的模式完成。我们在所谓的“酒吧问题”和FERET人脸数据库上展示了所提议的体系结构的强大功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号