首页> 外文期刊>Pattern Analysis and Applications >Dedicated feature descriptor for outdoor augmented reality detection
【24h】

Dedicated feature descriptor for outdoor augmented reality detection

机译:用于室外增强现实检测的专用特征描述符

获取原文
获取原文并翻译 | 示例

摘要

Stable augmented reality applications consist of an accurate registration supported by a robust tracking module. In outdoor locations, the changing environmental and light conditions compromise this tracking. Reliable descriptors under unsettled conditions are essential for this process. The most used descriptors have this distinctive capacity, but computers and mobile devices process them in a long time frame. This paper investigates a new lightweight environment dedicated descriptor (EDD) trained with a machine-learning algorithm. The descriptor analyzes the scene characteristics with elements that can be computed fast and that have distinctive information about the selected area. The complete descriptor is used for semantic feature extraction with the aid of a trained random forest classifier. The descriptor is compared with the most popular descriptors-with respect to speed, accuracy, and invariance to illumination changes, scale, affine transformation, and rotation-and the results show that it is faster and in most cases equally reliable .
机译:稳定的增强现实应用程序由一个可靠的跟踪模块支持的准确配准组成。在室外位置,不断变化的环境和光线条件会影响这种跟踪。在不稳定条件下的可靠描述符对于此过程至关重要。最常用的描述符具有这种独特的功能,但是计算机和移动设备会在很长的时间内处理它们。本文研究了一种采用机器学习算法训练的新型轻量级环境专用描述符(EDD)。描述符使用可以快速计算并具有有关所选区域的独特信息的元素来分析场景特征。借助经过训练的随机森林分类器,完整的描述符可用于语义特征提取。将描述符与最流行的描述符进行比较-涉及速度,准确性以及对照明变化,缩放,仿射变换和旋转的不变性-结果表明它更快且在大多数情况下同样可靠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号