首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >A Unified Framework for Gesture Recognition and Spatiotemporal Gesture Segmentation
【24h】

A Unified Framework for Gesture Recognition and Spatiotemporal Gesture Segmentation

机译:手势识别和时空手势分割的统一框架

获取原文
获取原文并翻译 | 示例

摘要

Within the context of hand gesture recognition, spatiotemporal gesture segmentation is the task of determining, in a video sequence, where the gesturing hand is located and when the gesture starts and ends. Existing gesture recognition methods typically assume either known spatial segmentation or known temporal segmentation, or both. This paper introduces a unified framework for simultaneously performing spatial segmentation, temporal segmentation, and recognition. In the proposed framework, information flows both bottom-up and top-down. A gesture can be recognized even when the hand location is highly ambiguous and when information about when the gesture begins and ends is unavailable. Thus, the method can be applied to continuous image streams where gestures are performed in front of moving, cluttered backgrounds. The proposed method consists of three novel contributions: a spatiotemporal matching algorithm that can accommodate multiple candidate hand detections in every frame, a classifier-based pruning framework that enables accurate and early rejection of poor matches to gesture models, and a subgesture reasoning algorithm that learns which gesture models can falsely match parts of other longer gestures. The performance of the approach is evaluated on two challenging applications: recognition of hand-signed digits gestured by users wearing short-sleeved shirts, in front of a cluttered background, and retrieval of occurrences of signs of interest in a video database containing continuous, unsegmented signing in American Sign Language (ASL).
机译:在手势识别的上下文中,时空手势分割是确定视频序列中手势手的位置以及手势开始和结束的时间的任务。现有的手势识别方法通常假设已知的空间分割或已知的时间分割,或两者兼有。本文介绍了用于同时执行空间分割,时间分割和识别的统一框架。在提议的框架中,信息流自下而上和自上而下流动。即使手的位置非常模糊,并且无法获得有关手势开始和结束时间的信息,也可以识别手势。因此,该方法可以应用于连续的图像流,其中在移动的,混乱的背景之前执行手势。所提出的方法包括三项新颖的贡献:一种时空匹配算法,可以在每个帧中容纳多个候选手检测;基于分类器的修剪框架,可以准确,尽早地拒绝手势模型的不良匹配;以及一种学习了手势的推理算法哪些手势模型可以错误地匹配其他较长手势的一部分。该方法的性能在两个具有挑战性的应用程序上进行了评估:识别杂乱背景前穿着短袖衬衫的用户手势手势,并在包含连续,未分段的视频数据库中检索感兴趣的迹象使用美国手语(ASL)签名。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号