首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Scalable Feature Matching by Dual Cascaded Scalar Quantization for Image Retrieval
【24h】

Scalable Feature Matching by Dual Cascaded Scalar Quantization for Image Retrieval

机译:通过双级联标量量化的可扩展特征匹配进行图像检索

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate the problem of scalable visual feature matching in large-scale image search and propose a novel cascaded scalar quantization scheme in dual resolution. We formulate the visual feature matching as a range-based neighbor search problem and approach it by identifying hyper-cubes with a dual-resolution scalar quantization strategy. Specifically, for each dimension of the PCA-transformed feature, scalar quantization is performed at both coarse and fine resolutions. The scalar quantization results at the coarse resolution are cascaded over multiple dimensions to index an image database. The scalar quantization results over multiple dimensions at the fine resolution are concatenated into a binary super-vector and stored into the index list for efficient verification. The proposed cascaded scalar quantization (CSQ) method is free of the costly visual codebook training and thus is independent of any image descriptor training set. The index structure of the CSQ is flexible enough to accommodate new image features and scalable to index large-scale image database. We evaluate our approach on the public benchmark datasets for large-scale image retrieval. Experimental results demonstrate the competitive retrieval performance of the proposed method compared with several recent retrieval algorithms on feature quantization.
机译:在本文中,我们研究了大规模图像搜索中可伸缩视觉特征匹配的问题,并提出了一种新颖的双分辨率级联标量量化方案。我们将视觉特征匹配公式化为基于范围的邻居搜索问题,并通过使用双分辨率标量量化策略识别超立方体来解决该问题。具体来说,对于PCA转换特征的每个维度,均以粗分辨率和精细分辨率执行标量量化。粗分辨率下的标量量化结果在多个维度上级联,以索引图像数据库。将多个具有高分辨率的标量量化结果连接到一个二进制超向量中,并存储到索引列表中,以进行有效验证。所提出的级联标量量化(CSQ)方法无需昂贵的视觉码本训练,因此与任何图像描述符训练集无关。 CSQ的索引结构足够灵活,可以容纳新的图像功能,并且可以扩展以索引大型图像数据库。我们评估用于大型图像检索的公共基准数据集的方法。实验结果表明,与几种最近的特征量化检索算法相比,该方法具有较好的检索性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号