首页> 外文期刊>Parallel Computing >An efficient implementation of parallel eigenvalue computation for massively parallel processing
【24h】

An efficient implementation of parallel eigenvalue computation for massively parallel processing

机译:用于大规模并行处理的并行特征值计算的有效实现

获取原文
获取原文并翻译 | 示例

摘要

This paper describes an efficient implementation and evaluation of a parallel eigensolver for computing all eigenvalues of dense symmetric matrices. Our eigensolver uses a Householder tridiagonalization method, which has higher parallelism and performance than conventional methods when problem size is relatively small, e.g., the order of 10,000. This is very important for relevant practical applications, where many diagonalizations for such matrices are required so often. The routine was evaluated to the ScaLAPACK library on 1024 processors of thf HITACHI SR2201.
机译:本文介绍了一种用于计算密集对称矩阵所有特征值的并行特征求解器的有效实现和评估。我们的特征求解器使用Householder三对角化方法,当问题大小相对较小(例如10,000量级)时,其比传统方法具有更高的并行度和性能。这对于相关的实际应用非常重要,因为实际应用中经常需要对这些矩阵进行许多对角化处理。该例程已在HITACHI SR2201的1024个处理器上的ScaLAPACK库中进行了评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号