首页> 外文期刊>Parallel Computing >Parallel bulk-loading of spatial data
【24h】

Parallel bulk-loading of spatial data

机译:并行批量加载空间数据

获取原文
获取原文并翻译 | 示例

摘要

Spatial database systems have been introduced in order to support non-traditional data types and more complex queries. Although bulk-loading techniques for access methods have been studied in the spatial database literature, parallel bulk-loading has not been addressed in a parallel spatial database context. Therefore, we study the problem of parallel bulk-loading, assuming that an R-tree like access method need to be constructed, from a spatial relation that is distributed to a number of processors. Analytical cost models and experimental evaluation based on real-life and synthetic datasets demonstrate that the index construction time can be reduced considerably by exploiting parallelism. I/O costs, CPU time and communication costs are taken into consideration in order to investigate the efficiency of the proposed algorithm.
机译:为了支持非传统数据类型和更复杂的查询,引入了空间数据库系统。尽管在空间数据库文献中已经研究了用于访问方法的批量加载技术,但是在并行空间数据库环境中尚未解决并行批量加载问题。因此,我们假设需要根据分配给多个处理器的空间关系来构造类似R树的访问方法,来研究并行批量加载的问题。基于现实生活和综合数据集的分析成本模型和实验评估表明,利用并行性可以大大减少索引构建时间。为了调查所提出算法的效率,考虑了I / O成本,CPU时间和通信成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号