首页> 外文期刊>Parallel Computing >A new scalable distributed k-means algorithm based on Cloud micro-services for High-performance computing
【24h】

A new scalable distributed k-means algorithm based on Cloud micro-services for High-performance computing

机译:一种新的可扩展分布式K均值算法,基于云微型服务进行高性能计算

获取原文
获取原文并翻译 | 示例

摘要

The paper aims to propose a distributed clustering method for High performance computing (HPC) models and, its application for medical image processing. The communication cost is one of the great challenges, which minimizes the scalability of parallel and distributed computing models. Indeed, it reduces significantly the performance of HPC systems where these models are assigned to be implemented. In this paper, we present a new distributed k-means method which integrates virtual parallel distributed computing model with a low communication cost mechanism. The k-means method is performed as a distributed service within a cooperative micro-services team which uses asynchronous communication mechanism based on AMQP protocol. We design and implement a parallel and distributed HPC application for MRI image segmentation assigned to be deployed on cloud. Experimental results show that the proposed method (DSCM) and its assigned model reach high degree of scalability. We expect this clustering approach to provide scalable HPC applications for big data clustering.
机译:本文旨在提出一种用于高性能计算(HPC)模型的分布式聚类方法,以及其用于医学图像处理的应用。通信成本是挑战之一,最大限度地减少了并行和分布式计算模型的可扩展性。实际上,它显着降低了分配这些模型的HPC系统的性能。在本文中,我们提出了一种新的分布式K-均值方法,其与低通信成本机制集成了虚拟并行分布式计算模型。 K-ulit方法在合作微型服务团队中作为分布式服务执行,该组合微型服务团队使用基于AMQP协议的异步通信机制。我们设计并实现并行和分布式HPC应用程序,用于分配要在云上部署的MRI图像分段。实验结果表明,所提出的方法(DSCM)及其分配模型达到高度可扩展性。我们预计此聚类方法可以为大数据聚类提供可扩展的HPC应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号