首页> 外文期刊>Parallel Computing >Parallelism in simulation and modeling of scale-free complex networks
【24h】

Parallelism in simulation and modeling of scale-free complex networks

机译:无标度复杂网络仿真和建模中的并行性

获取原文
获取原文并翻译 | 示例

摘要

Evolution and structure of very large networks has attracted considerable attention in recent years. In this paper we study a possibility to simulate stochastic processes which move edges in a network leading to a scale-free structure. Scale-free networks are characterized by a "fat-tail" degree distribution with considerably higher presence of so called hubs - nodes with very high degree. To understand and predict very large networks it is important to study the possibility of parallel simulation. We consider a class of stochastic processes which keeps the number of edges in the network constant called equilibrium networks. This class is characterized by a preferential selection where the edge destinations are chosen according to a preferential function f(k) which depends on the node degree k. For this class of stochastic processes we prove that it is difficult if not impossible to design an exact parallel algorithm if the function f(k) is monotonous with an injective derivative. However, in the important case where f(k) is linear we present a fully scalable algorithm with almost linear speedup. The experimental results confirm the linear scalability on a large processor cluster.
机译:近年来,超大型网络的演进和结构引起了相当大的关注。在本文中,我们研究了一种模拟随机过程的可能性,该过程使网络中的边沿移动,从而导致无标度结构。无标度网络的特征是“胖尾”度分布,所谓集线器(具有很高度的节点)的存在要高得多。为了理解和预测非常大的网络,研究并行仿真的可能性很重要。我们考虑一类随机过程,该过程使网络中的边数保持恒定,称为平衡网络。该类别的特征在于优先选择,其中根据取决于节点度数k的优先函数f(k)来选择边缘目的地。对于这类随机过程,我们证明,如果函数f(k)是单调且带有内射导数,那么即使不是不可能设计出精确的并行算法也是很困难的。但是,在f(k)是线性的重要情况下,我们提出了一种几乎线性加速的完全可扩展算法。实验结果证实了大型处理器集群上的线性可扩展性。

著录项

  • 来源
    《Parallel Computing》 |2010年第8期|P.469-485|共17页
  • 作者单位

    Institute of Theoretical Computer Science, ETH Zuerich, Universitaetstrasse 6, 8092 Zuerich, Switzerland;

    rnInstitute of Theoretical Computer Science, ETH Zuerich, Universitaetstrasse 6, 8092 Zuerich, Switzerland;

    rnInstitute of Theoretical Computer Science, ETH Zuerich, Universitaetstrasse 6, 8092 Zuerich, Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    scale-free networks; stochastic processes; non-growing complex networks;

    机译:无规模网络;随机过程;不增长的复杂网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号