首页> 外文期刊>Parallel Computing >A hybrid message passing/shared memory parallelization of the adaptive integral method for multi-core clusters
【24h】

A hybrid message passing/shared memory parallelization of the adaptive integral method for multi-core clusters

机译:多核集群自适应积分方法的混合消息传递/共享内存并行化

获取原文
获取原文并翻译 | 示例

摘要

A hybrid message passing and shared memory parallelization technique is presented for improving the scalability of the adaptive integral method (AIM), an FFT based algorithm, on clusters of identical multi-core processors. The proposed hybrid MPI/OpenMP parallelization scheme is based on a nested one-dimensional (1-D) slab decomposition of the 3-D auxiliary regular grid and the associated AIM calculations: If there are M processors and T cores per processor, the scheme (i) divides the regular grid into M slabs and MT sub-slabs, (ii) assigns each slab/sub-slab and the associated operations to one of the processors/cores, and (iii) uses MPI for inter-processor data communication and OpenMP for intra-processor data exchange. The MPI/OpenMP parallel AIM is used to accelerate the solution of the combined-field integral equation pertinent to the analysis of time-harmonic electromagnetic scattering from perfectly conducting surfaces. The scalability of the scheme is investigated theoretically and verified on a state-of-the-art multi-core cluster for benchmark scattering problems. Timing and speedup results on up to 1024 quad-core processors show that the hybrid MPI/OpenMP parallelization of AIM exhibits better strong scalability (fixed problem size speedup) than pure MPI parallelization of it when multiple cores are used on each processor.
机译:提出了一种混合消息传递和共享内存并行化技术,用于在相同多核处理器的集群上提高自适应积分方法(AIM)(一种基于FFT的算法)的可伸缩性。拟议的MPI / OpenMP混合并行化方案基于3-D辅助规则网格的嵌套一维(1-D)平板分解以及相关的AIM计算:如果每个处理器有M个处理器和T个核,则该方案(i)将常规网格划分为M个板块和MT个子板块,(ii)将每个板块/子板块和相关操作分配给处理器/核心之一,并且(iii)使用MPI进行处理器间数据通信和OpenMP用于处理器内数据交换。 MPI / OpenMP并行AIM用于加速与理想导体表面的时谐波电磁散射分析有关的组合场积分方程的求解。从理论上研究了该方案的可扩展性,并在用于基准散射问题的最新型多核集群上进行了验证。在多达1024个四核处理器上的时序和加速结果显示,与AIM混合MPI / OpenMP并行化相比,当在每个处理器上使用多个核时,与纯MPI并行化相比,AIM具有更好的强大可伸缩性(固定的问题大小加速)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号