首页> 外文期刊>Parallel Computing >Cluster-based optimized parallel video transcoding
【24h】

Cluster-based optimized parallel video transcoding

机译:基于集群的优化并行视频转码

获取原文
获取原文并翻译 | 示例

摘要

Video transcoding is a popular technique for delivering video content of varying quality and size to diverse audiences.In this paper an analytical approach to the optimization of a large collection of parallel transcoding techniques based on temporal partitioning, is pursued. The key elements in the design of such techniques are identified, allowing them to be enumerated and classified. Closed-form solutions to the partitioning/scheduling problem (and optimum operation sequencing where necessary) are derived for the most important of these methods, under CBR input media conditions. Subsequently, appropriate heuristics allow the solution of the partitioning problem under VBR input media conditions.The paper is concluded by an extensive battery of tests for the most significant strategies, on several feature-length video streams. The tests reveal not only how one of the proposed strategies, namely NPWF_(VBR), strikes a nice balance between efficiency and distortion minimization on heterogeneous platforms, but also allow us to derive guidelines for transcoding solution deployment.
机译:视频代码转换是一种流行的技术,可以将不同质量和大小的视频内容交付给不同的受众。本文寻求一种基于时间划分的,优化大量并行代码转换技术的分析方法。确定了此类技术设计中的关键元素,可以对其进行枚举和分类。在CBR输入介质条件下,对于这些方法中最重要的方法,得出了针对分区/计划问题(以及必要时的最佳操作顺序)的闭式解决方案。随后,适当的试探法可以解决VBR输入媒体条件下的分区问题。本文通过一系列针对大多数特征长度视频流的最重要策略的广泛测试得出结论。这些测试不仅揭示了所提出的策略之一,即NPWF_(VBR)如何在异构平台上的效率与最小化失真之间取得了很好的平衡,而且还使我们能够得出转码解决方案部署的准则。

著录项

  • 来源
    《Parallel Computing》 |2012年第5期|p.226-244|共19页
  • 作者

    Gerassimos Barlas;

  • 作者单位

    Computer Science & Engineering Department, College of Engineering, American University of Sharjah, Sharjah, P.O.B. 26666, United Arab Emirates;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    parallel video encoding; video transcoding; divisible load theory;

    机译:并行视频编码;视频转码;可分负荷理论;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号