首页> 外文期刊>Parallel Computing >Algorithm-level Feedback-controlled Adaptive data prefetcher: Accelerating data access for high-performance processors
【24h】

Algorithm-level Feedback-controlled Adaptive data prefetcher: Accelerating data access for high-performance processors

机译:算法级反馈控制的自适应数据预取器:加速高性能处理器的数据访问

获取原文
获取原文并翻译 | 示例

摘要

The rapid advance of processor architectures such as the emerged multicore architectures and the substantially increased computing capability on chip have put more pressure on the sluggish memory systems than ever. In the meantime, many applications become more and more data intensive. Data-access delay, not the processor speed, becomes the leading performance bottleneck of high-performance computing. Data prefetching is an effective solution to accelerating applications' data access and bridging the growing gap between computing speed and data-access speed. Existing works of prefetching, however, are very conservative in general, due to the computing power consumption concern of the past. They suffer low effectiveness especially when applications' access pattern changes. In this study, we propose an Algorithm-level Feedback-controlled Adaptive (AFA) data prefetcher to address these issues. The AFA prefetcher is based on the Data-Access History Cache, a hardware structure that is specifically designed for data access acceleration. It provides an algorithm-level adaptation and is capable of dynamically adapting to appropriate prefetching algorithms at runtime. We have conducted extensive simulation testing with the SimpleScalar simulator to validate the design and to analyze the performance gain. The simulation results show that the AFA prefetcher is effective and achieves considerable IPC (Instructions Per Cycle) improvement for 21 representative SPEC-CPU benchmarks.
机译:诸如新兴的多核体系结构之类的处理器体系结构的飞速发展,以及片上计算能力的显着提高,给缓慢的存储系统带来了前所未有的压力。同时,许多应用程序变得越来越密集。数据访问延迟而非处理器速度成为了高性能计算的主要性能瓶颈。数据预取是加速应用程序数据访问并弥合计算速度与数据访问速度之间日益扩大的差距的有效解决方案。但是,由于过去对计算功耗的关注,现有的预取工作通常非常保守。它们的效率低下,尤其是在应用程序的访问模式改变时。在这项研究中,我们提出了一种算法级的反馈控制自适应(AFA)数据预取器来解决这些问题。 AFA预取器基于数据访问历史缓存,这是一种专门为加速数据访问而设计的硬件结构。它提供了算法级别的适应能力,并能够在运行时动态适应适当的预取算法。我们已经使用SimpleScalar模拟器进行了广泛的模拟测试,以验证设计并分析性能提升。仿真结果表明,对于21个具有代表性的SPEC-CPU基准,AFA预取器是有效的,并且实现了相当大的IPC(每个周期的指令)改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号