首页> 外文期刊>Parallel Computing >A study of graph partitioning schemes for parallel graph community detection
【24h】

A study of graph partitioning schemes for parallel graph community detection

机译:并行图社区检测的图划分方案研究

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a study of graph partitioning schemes for parallel graph community detection on distributed memory machines. We investigate the relationship between graph structure and parallel clustering effectiveness, and develop a heuristic partitioning algorithm suitable for modularity-based algorithms. We demonstrate the accuracy and scalability of our approach using several real-world large graph datasets compared with stateof-the-art parallel algorithms on the Cray XK7 supercomputer at Oak Ridge National Laboratory. Given the ubiquitous graph model, we expect this high-performance solution will help lead to new insights in numerous fields. (C) 2016 Elsevier B.V. All rights reserved.
机译:本文提出了一种用于分布式内存机器上并行图社区检测的图分区方案的研究。我们研究图结构与并行聚类有效性之间的关系,并开发适用于基于模块化算法的启发式分区算法。我们在橡树岭国家实验室(Oak Ridge National Laboratory)的Cray XK7超级计算机上,使用几个实际的大型图形数据集与最新的并行算法进行比较,证明了我们方法的准确性和可扩展性。鉴于无处不在的图形模型,我们希望这种高性能解决方案将有助于在许多领域带来新见解。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号