首页> 外文期刊>Parallel Computing >A distributed-memory hierarchical solver for general sparse linear systems
【24h】

A distributed-memory hierarchical solver for general sparse linear systems

机译:通用稀疏线性系统的分布式内存分层求解器

获取原文
获取原文并翻译 | 示例

摘要

We present a parallel hierarchical solver for general sparse linear systems on distributed memory machines. For large-scale problems, this fully algebraic algorithm is faster and more memory-efficient than sparse direct solvers because it exploits the low-rank structure of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierarchical solver can be used either as a direct solver or as a preconditioner. The parallel algorithm is based on data decomposition and requires only local communication for updating boundary data on every processor. Moreover, the computation-to-communication ratio of the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain owned by every processor. We present various numerical results to demonstrate the versatility and scalability of the parallel algorithm. (C) 2017 Elsevier B.V. All rights reserved.
机译:我们为分布式存储机器上的通用稀疏线性系统提供了一个并行的分层求解器。对于大规模问题,这种完全代数算法比稀疏直接求解器更快速,存储效率更高,因为它利用了填充块的低秩结构。根据低秩逼近的精度,分层求解器可以用作直接求解器或前置条件。并行算法基于数据分解,仅需要本地通信即可更新每个处理器上的边界数据。此外,并行算法的计算与通信之比大约是每个处理器拥有的子域的体积与表面积之比。我们提供各种数值结果来证明并行算法的多功能性和可扩展性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号