首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Improving Performance of Dynamic Programming via Parallelism and Locality on Multicore Architectures
【24h】

Improving Performance of Dynamic Programming via Parallelism and Locality on Multicore Architectures

机译:通过并行和局部化在多核体系结构上提高动态编程的性能

获取原文
获取原文并翻译 | 示例

摘要

Dynamic programming (DP) is a popular technique which is used to solve combinatorial search and optimization problems. This paper focuses on one type of DP, which is called nonserial polyadic dynamic programming (NPDP). Owing to the nonuniform data dependencies of NPDP, it is difficult to exploit either parallelism or locality. Worse still, the emerging multi/many-core architectures with small on-chip memory make these issues more challenging. In this paper, we address the challenges of exploiting the fine grain parallelism and locality of NPDP on multicore architectures. We describe a latency-tolerant model and a percolation technique for programming on multicore architectures. On an algorithmic level, both parallelism and locality do benefit from a specific data dependence transformation of NPDP. Next, we propose a parallel pipelining algorithm by decomposing computation operators and percolating data through a memory hierarchy to create just-in-time locality. In order to predict the execution time, we formulate an analytical performance model of the parallel algorithm. The parallel pipelining algorithm achieves not only high scalability on the 160-core IBM Cyclops64, but portable performance as well, across the 8-core Sun Niagara and quad-cores Intel Clovertown.
机译:动态编程(DP)是一种流行的技术,用于解决组合搜索和优化问题。本文重点介绍一种类型的DP,称为非串行多adadic动态编程(NPDP)。由于NPDP的数据依赖性不统一,因此很难利用并行性或局部性。更糟糕的是,新兴的多核/多核架构具有较小的片上存储器,使这些问题更具挑战性。在本文中,我们解决了在多核体系结构上利用NPDP的细粒度并行性和局部性的挑战。我们描述了在多核体系结构上进行编程的延迟容忍模型和渗滤技术。在算法水平上,并行性和局部性都可以从NPDP的特定数据依赖转换中受益。接下来,我们提出了一种并行流水线算法,该算法通过分解计算运算符并通过内存层次结构对数据进行渗滤以创建即时本地性。为了预测执行时间,我们制定了并行算法的分析性能模型。并行流水线算法不仅可以在160核IBM Cyclops64上实现高可伸缩性,而且还可以在8核Sun Niagara和四核Intel Clovertown上实现可移植性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号