首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >A Fast Discrete Wavelet Transform Using Hybrid Parallelism on GPUs
【24h】

A Fast Discrete Wavelet Transform Using Hybrid Parallelism on GPUs

机译:在GPU上使用混合并行度的快速离散小波变换

获取原文
获取原文并翻译 | 示例

摘要

Wavelet transform has been widely used in many signal and image processing applications. Due to its wide adoption for time-critical applications, such as streaming and real-time signal processing, many acceleration techniques were developed during the past decade. Recently, the graphics processing unit (GPU) has gained much attention for accelerating computationally-intensive problems and many solutions of GPU-based discrete wavelet transform (DWT) have been introduced, but most of them did not fully leverage the potential of the GPU. In this paper, we present various state-of-the-art GPU optimization strategies in DWT implementation, such as leveraging shared memory, registers, warp shuffling instructions, and thread- and instruction-level parallelism (TLP, ILP), and finally elaborate our hybrid approach to further boost up its performance. In addition, we introduce a novel mixed-band memory layout for Haar DWT, where multi-level transform can be carried out in a single fused kernel launch. As a result, unlike recent GPU DWT methods that focus mainly on maximizing ILP, we show that the optimal GPU DWT performance can be achieved by hybrid parallelism combining both TLP and ILP together in a mixed-band approach. We demonstrate the performance of our proposed method by comparison with other CPU and GPU DWT methods.
机译:小波变换已广泛用于许多信号和图像处理应用中。由于其广泛用于对时间要求严格的应用(例如流和实时信号处理),因此在过去十年中开发了许多加速技术。最近,图形处理单元(GPU)在加速计算密集型问题方面引起了广泛关注,并且已引入了许多基于GPU的离散小波变换(DWT)解决方案,但大多数解决方案并未充分利用GPU的潜力。在本文中,我们介绍了DWT实现中的各种最新GPU优化策略,例如利用共享内存,寄存器,warp改组指令以及线程和指令级并行性(TLP,ILP),最后对其进行详细阐述我们的混合方法来进一步提高其性能。另外,我们为Haar DWT引入了一种新颖的混合频带存储器布局,其中可以在单个融合内核启动中执行多级转换。结果,与最近主要关注于最大化ILP的GPU DWT方法不同,我们表明,可以通过在混合频段方法中将TLP和ILP结合在一起的混合并行性来实现最佳GPU DWT性能。通过与其他CPU和GPU DWT方法进行比较,我们证明了我们提出的方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号