首页> 外文期刊>International Journal of Parallel, Emergent and Distributed Systems >Assessing new approaches to schedule a batch of identical intree-shaped workflows on a heterogeneous platform
【24h】

Assessing new approaches to schedule a batch of identical intree-shaped workflows on a heterogeneous platform

机译:评估在异构平台上调度一批相同的intree形工作流的新方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the makespan optimisation when scheduling a batch of identical workflows on a heterogeneous platform as a service-oriented grid or a micro-factory. A job is represented by a directed acyclic graph (DAG) with typed tasks and no fork nodes (in-tree precedence constraints). The processing resources are able to process a set of task types, each with unrelated processing cost. The objective function is to minimise the execution makespan of a batch of identical workflows while most of the works concentrate on the throughput in this case. Three algorithms are studied in this context: a classical list algorithm and two algorithms based on new approaches, a genetic algorithm and a steady-state algorithm. The contribution of this paper is both on the adaptation of these algorithms to the particular case of batches of identical workflows and on the performance analysis of these algorithms regarding the makespan. We show the benefits of their adaptation, and we show that the algorithm performance depends on the structure of the workflow, on the size of the batch and on the platform characteristics.
机译:在本文中,当我们在异构平台(如面向服务的网格或微型工厂)上调度一批相同的工作流时,我们将考虑makepan优化。作业由有类型任务且无派生节点(树内优先约束)的有向无环图(DAG)表示。处理资源能够处理一组任务类型,每种任务类型都具有无关的处理成本。目标功能是最大程度地减少一批相同工作流程的执行周期,而在这种情况下,大多数工作都集中在吞吐量上。在这种情况下研究了三种算法:经典列表算法和基于新方法的两种算法,即遗传算法和稳态算法。本文的贡献既在于这些算法对批量相同工作流程的特定情况的适应性,又在于这些算法关于工期的性能分析。我们展示了它们的适应性,并展示了算法的性能取决于工作流的结构,批处理的大小以及平台的特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号