首页> 外文期刊>Parallel Algorithms and Applications >Scheduling in volunteer computing networks, based on neural network prediction of the job execution time
【24h】

Scheduling in volunteer computing networks, based on neural network prediction of the job execution time

机译:基于神经网络预测作业执行时间的志愿者计算网络中的计划

获取原文
获取原文并翻译 | 示例

摘要

Improvement of scheduling which broadly speaking means the distribution of jobs to volunteers is very important for improving the effectiveness of volunteer computing networks operating on the basis of computing resources connected to the Internet. The scheduling strategy based on the prediction of the job execution time is chosen as the main strategy to solve this problem. Suggested approach includes a neural network mechanism for computing the predictive estimate of the job execution time and a genetic algorithm for distributing jobs to volunteers with adjustment of parameters that makes it possible to respond to changes in the computing environment. The features of the approach are illustrated by computing experiments. In addition, we consider an example of the distribution of jobs to two volunteers for a project consisting of three applications. Even approximate (interval) estimates of job execution time allowed reducing the total execution time of the project and thereby optimising the computing process.
机译:广义上说,调度的改进意味着将工作分配给志愿者,这对于提高基于连接到Internet的计算资源上运行的志愿者计算网络的有效性非常重要。选择基于工作执行时间预测的调度策略作为解决该问题的主要策略。建议的方法包括用于计算作业执行时间的预测估计值的神经网络机制,以及用于通过调整参数使志愿者能够响应计算环境变化的遗传算法来将作业分配给志愿者的遗传算法。通过计算实验说明了该方法的特征。另外,我们以一个由三个应用程序组成的项目为例,介绍了将工作分配给两名志愿者的示例。甚至作业执行时间的近似(间隔)估计值都可以减少项目的总执行时间,从而优化计算过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号