首页> 外文期刊>Parallel algorithms and applications >Asynchronous broadcast-based decentralized learning in sensor networks
【24h】

Asynchronous broadcast-based decentralized learning in sensor networks

机译:传感器网络中基于异步广播的分散式学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the problem of decentralized learning in sensor networks in which local learners estimate and reach consensus to the quantity of interest inferred globally while communicating only with their immediate neighbours. The main challenge lies in reducing the communication cost in the network, which involves inter-node synchronisation and data exchange. To address this issue, a novel asynchronous broadcast-based decentralized learning algorithm is proposed. Furthermore, we prove that the iterates generated by the developed decentralized method converge to a consensual optimal solution (model). Numerical results demonstrate that it is a promising approach for decentralized learning in sensor networks.
机译:在本文中,我们研究了传感器网络中的分散学习问题,在该网络中,本地学习者在仅与他们的近邻沟通的同时,对全球推断的兴趣量进行了估计并达成共识。主要挑战在于降低网络中的通信成本,这涉及节点间同步和数据交换。为了解决这个问题,提出了一种新颖的基于异步广播的分散式学习算法。此外,我们证明了通过开发的分散方法生成的迭代收敛到共识的最优解(模型)。数值结果表明,这是传感器网络中分散学习的一种有前途的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号