首页> 外文期刊>Optimization Methods and Software >Limited memory bundle method for large bound constrained nonsmooth optimization: convergence analysis
【24h】

Limited memory bundle method for large bound constrained nonsmooth optimization: convergence analysis

机译:大范围约束非平滑优化的有限内存束方法:收敛性分析

获取原文
获取原文并翻译 | 示例

摘要

Practical optimization problems often involve nonsmooth functions of hundreds or thousands of variables. As a rule, the variables in such large problems are restricted to certain meaningful intervals. In the article [N. Karmitsa and M.M. Mäkelä, Adaptive limited memory bundle method for bound constrained large-scale nonsmooth optimization, Optimization (to appear)], we described an efficient limited-memory bundle method for large-scale nonsmooth, possibly nonconvex, bound constrained optimization. Although this method works very well in numerical experiments, it suffers from one theoretical drawback, namely, that it is not necessarily globally convergent. In this article, a new variant of the method is proposed, and its global convergence for locally Lipschitz continuous functions is proved.View full textDownload full textKeywordsnondifferentiable programming, large-scale optimization, bundle methods, limited memory methods, box constraints, global convergenceRelated var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/10556780902842495
机译:实际的优化问题通常涉及成百上千个变量的不平滑函数。通常,此类大问题中的变量将限制在某些有意义的时间间隔内。在文章[N. Karmitsa和M.M. Mäkelä,用于有限约束的大规模非光滑优化的自适应有限内存束方法,[优化](出现)],我们描述了用于大规模非光滑(可能为非凸)的约束有限优化的有效有限内存束方法。尽管此方法在数值实验中效果很好,但它具有一个理论上的缺点,即不一定全局收敛。本文提出了该方法的新变种,并证明了其对局部Lipschitz连续函数的全局收敛性。查看全文下载全文关键字不可微编程,大规模优化,捆绑方法,有限存储方法,盒约束,全局收敛性相关变量addthis_config = {ui_cobrand:“泰勒和弗朗西斯在线”,servicescompact:“ citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,更多”,发布:“ ra-4dff56cd6bb1830b”};添加到候选列表链接永久链接http://dx.doi.org/10.1080/10556780902842495

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号