首页> 外文期刊>Optimization Methods and Software >A new class of distributed optimization algorithms: application to regression of distributed data
【24h】

A new class of distributed optimization algorithms: application to regression of distributed data

机译:一类新的分布式优化算法:在分布式数据回归中的应用

获取原文
获取原文并翻译 | 示例

摘要

In a distributed optimization problem, the complete problem information is not available at a single location but is rather distributed among different agents in a multi-agent system. In the problems studied in the literature, each agent has an objective function and the network goal is to minimize the sum of the agents’ objective functions over a constraint set that is globally known. In this paper, we study a generalization of the above distributed optimization problem. In particular, the network objective is to minimize a function of the sum of the individual objective functions over the constraint set. The ‘outer’ function and the constraint set are known to all the agents. We discuss an algorithm and prove its convergence, and then discuss extensions to more general and complex distributed optimization problems. We provide a motivation for our algorithms through the example of distributed regression of distributed data.View full textDownload full textKeywordsdistributed optimization, convex optimization, distributed regression AMS Subject Classification 90C25, 90C30Related var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/10556788.2010.511669
机译:在分布式优化问题中,完整的问题信息在单个位置不可用,而是分布在多主体系统中的不同主体之间。在文献研究的问题中,每个代理都有一个目标函数,网络的目标是在一个全局已知的约束集上使代理的目标函数之和最小。在本文中,我们研究了上述分布式优化问题的推广。特别地,网络目标是在约束集合上最小化各个目标函数之和的函数。所有代理都知道“外部”功能和约束集。我们讨论一种算法并证明其收敛性,然后讨论对更一般和复杂的分布式优化问题的扩展。我们以分布式数据的分布式回归为例,为我们的算法提供了动力。查看全文下载全文关键字分布式优化,凸优化,分布式回归AMS主题分类90C25、90C30相关的var addthis_config = {ui_cobrand:“泰勒和弗朗西斯在线”,services_compact: “ citeulike,netvibes,twitter,technorati,美味,linkedin,facebook,stumbleupon,digg,google,更多”,发布:“ ra-4dff56cd6bb1830b”};添加到候选列表链接永久链接http://dx.doi.org/10.1080/10556788.2010.511669

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号