...
首页> 外文期刊>Optimization and Engineering >Parameter identification and shape optimization An integrated methodology in metal forming and structural applications
【24h】

Parameter identification and shape optimization An integrated methodology in metal forming and structural applications

机译:参数识别和形状优化金属成型和结构应用中的集成方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Simulation of metal forming processes using the Finite Element Method (FEM) is a well established procedure, being nowadays possible to develop alternative approaches, such as inverse methodologies, in solving complex problems. In the present paper, two types of inverse approaches will be discussed, namely the parameter identification and the shape optimization problems. The aim of the former is to evaluate the input parameters for material constitutive models that would lead to the most accurate set of results respecting physical experiments. The second category involves determining the initial geometry of a given specimen leading to a desired final geometry after the forming process. The purpose of the present work is then to formulate these inverse problems as optimization problems, introducing a straightforward methodology of process optimization in engineering applications such as metal forming and structural analysis. To reach this goal, an integrated optimization approach, using a finite element code together with a numerical optimization program, was employed. A gradient-based optimization method, as a combination of the steepest-descent method and the Levenberg-Marquardt techniques, was used. Numerical applications in the parameter optimization category include, namely, the characterization of a non-linear elasto-plastic hardening model and the determination of the parameters for a nonlinear hyperelastic model. It is also discussed the simultaneous identification of both constitutive material model parameters and the friction coefficient parameters. From the point of view of shape optimization problems, the determination of the initial geometry of a specimen in a upsetting billing problem as well as a methodology for defining the most suited blank shape to be formed in a square cup, are discussed. The final results for both categories show that this kind of algorithms have great potential for future developments in more demanding and realistic benchmarks. It is also worth noting that the presented integrated methodology can be easily applied to a first introduction of optimization techniques and numerical simulation to undergraduate courses in engineering.
机译:使用有限元方法(FEM)进行金属成型过程的模拟是一项公认的程序,如今可以开发出解决复杂问题的替代方法,例如逆方法。在本文中,将讨论两种类型的逆方法,即参数识别和形状优化问题。前者的目的是评估材料本构模型的输入参数,这将导致有关物理实验的最准确结果集。第二类涉及确定给定样本的初始几何形状,该初始几何形状在成形过程之后导致所需的最终几何形状。然后,本工作的目的是将这些反问题表述为优化问题,并在诸如金属成形和结构分析等工程应用中引入一种直接的过程优化方法。为了达到这个目标,采用了一种综合优化方法,该方法使用有限元代码和数值优化程序。基于梯度的优化方法,结合了最速下降方法和Levenberg-Marquardt技术。在参数优化类别中的数值应用包括:非线性弹塑性硬化模型的表征以及非线性超弹性模型的参数确定。还讨论了同时识别本构材料模型参数和摩擦系数参数的问题。从形状优化问题的角度,讨论了在setting粗的开票问题中确定样品的初始几何形状以及定义最合适的将在方形杯中形成的毛坯形状的方法。两种类别的最终结果都表明,这种算法在更苛刻和更实际的基准测试中具有巨大的发展潜力。还值得注意的是,所提出的集成方法可以很容易地应用于将优化技术和数值模拟首次引入工科本科课程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号