首页> 外文期刊>Nuclear Technology >A Second Generation Multiphase-CFD Framework Toward Predictive Modeling of DNB
【24h】

A Second Generation Multiphase-CFD Framework Toward Predictive Modeling of DNB

机译:DNB预测建模的第二代多相CFD框架

获取原文
获取原文并翻译 | 示例
       

摘要

Building on the strong belief that the advancement and consistent adoption of cutting-edge simulation tools is critical to the future of nuclear power, three-dimensional thermal-hydraulic methods in the form of computational fluid dynamics (CFD) have made enormous advancement and promise to transform the way we approach the design of more efficient and reliable systems. The success of these methods hinges on the accuracy and predictive ability of the underlying models, which must, at the same time, limit the computational cost and allow optimal scalability. A large effort at the Massachusetts Institute of Technology has been devoted to the development of a second-generation of multiphase-CFD (M-CFD) closures and to leveraging the continuous progression in the experimental techniques. Among the numerous objectives, the central challenge that has driven the overall approach is the prediction of departure from nucleate boiling. This work focuses on deriving the fundamental meso-scale mechanisms from the CFD-grade experiments and incorporates them in the M-CFD framework as subgrid-scale models. A more complete representation of lateral lift force and near-wall effects are proposed, in combination with direct numerical simulation-driven understanding of bubble-induced turbulence effects. The improved description of the multiphase flow distribution is coupled to a novel representation of boiling heat transfer, which aims at introducing all the physical mechanisms that are encountered at the boiling surface. Starting from the improved representation at the wall, this work concentrates on the micro-hydrodynamics of the thin liquid film on the heated surface, which governs the critical heat flux limit.
机译:基于坚信先进的仿真工具的进步和持续采用对核电的未来至关重要,因此,以计算流体动力学(CFD)形式出现的三维热工水力方法取得了巨大进步,并有望改变我们设计更高效,更可靠系统的方式。这些方法的成功取决于基础模型的准确性和预测能力,这些模型必须同时限制计算成本并允许最佳可伸缩性。麻省理工学院已投入大量精力开发第二代多相CFD(M-CFD)瓶盖,并利用实验技术的不断发展。在众多目标中,推动整体方法发展的主要挑战是预测偏离核沸腾。这项工作着重于从CFD级实验推导基本的中尺度机制,并将它们作为子网格尺度模型纳入M-CFD框架中。与直接数值模拟驱动的对气泡引起的湍流效应的理解相结合,提出了更完整的横向升力和近壁效应​​表示。多相流分布的改进描述与沸腾传热的新颖表示相结合,其目的是介绍沸腾表面遇到的所有物理机理。从改善墙面的外观开始,这项工作集中于受热表面上液体薄膜的微流体动力学,该动力学决定了临界的热通量极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号