首页> 外文期刊>Nuclear science and engineering >Moments-Based Versions of the Spherical Geometry Method of Tubes in Thick, Diffusive Regions
【24h】

Moments-Based Versions of the Spherical Geometry Method of Tubes in Thick, Diffusive Regions

机译:厚扩散区域中管的球面几何方法的基于矩的形式

获取原文
获取原文并翻译 | 示例
       

摘要

Characteristic methods are widely known to be very accurate approaches to the solution of numerical transport problems. These methods are most often used for neutron transport applications (i.e., lattice physics calculations) where spatial cells are of intermediate optical thickness [O(1) to 0(100) mean free paths, depending on the energy group] and materials are not exceptionally highly scattering (scattering ratios < 0.999). There has been interest in using characteristic methods for radiative transfer applications, which often involve very optically thick and diffusive regions. Previous work has involved analyses of families of Cartesian geometry characteristic methods in optically thick and diffusive regions. There is a significant body of work in the Russian literature on curvilinear geometry characteristic methods, but very few analyses of their behavior in thick diffusive regions have been published. In this paper we develop two new members of a family of one-dimensional spherical geometry characteristic methods-the method of tubes. These new methods are similar to traditional slab geometry characteristics methods in that they utilize spatial moments of the transport equation in each cell to generate the data used in the representation of the total source (scattering source plus external source). We present the results of an asymptotic analysis of these methods to predict their behavior in the thick diffusion limit, and we compare these predictions with numerical results from several test problems. This analysis shows that the constant source (step) method behaves very poorly in the diffusion limit, but that the linear source method is accurate in this physical regime.
机译:众所周知,特征方法是解决数字运输问题的非常准确的方法。这些方法最常用于中子传输应用(例如,晶格物理学计算),其中空间单元的光学厚度介于中间[O(1)至0(100)表示自由程,取决于能量组],并且材料并非例外高度散射(散射比<0.999)。对于将特征性方法用于辐射转移应用已经引起关注,所述特征性方法通常涉及非常光学上较厚和扩散的区域。先前的工作涉及分析光学较厚和扩散区域中的笛卡尔几何特征方法族。俄国文献中有大量关于曲线几何特征方法的研究,但很少发表有关其在厚扩散区域的行为的分析。在本文中,我们开发了一维球形几何特征方法族的两个新成员-管方法。这些新方法类似于传统的平板几何特征方法,因为它们利用每个单元中的输运方程的空间矩来生成用于表示总源(散射源加外部源)的数据。我们介绍了这些方法的渐进分析结果,以预测其在较厚扩散极限中的行为,并将这些预测与来自几个测试问题的数值结果进行了比较。该分析表明,恒定源(逐步)方法在扩散极限方面的表现非常差,但线性源方法在此物理状态下是准确的。

著录项

  • 来源
    《Nuclear science and engineering》 |2008年第3期|284-301|共18页
  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:44:10

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号