首页> 外文期刊>Nuclear science and engineering >When Is the Simple Radiotoxicity Approach Useful for Advanced Fuel Cycle System Assessments Given the Existence of Complex Performance Dose Assessments?
【24h】

When Is the Simple Radiotoxicity Approach Useful for Advanced Fuel Cycle System Assessments Given the Existence of Complex Performance Dose Assessments?

机译:考虑到存在复杂的性能剂量评估,简单的放射毒性方法何时对先进的燃料循环系统评估有用?

获取原文
获取原文并翻译 | 示例
       

摘要

Engineers often face the general question of which approximations are appropriate for a given analytical task. In particular, when is a simpler model useful if a more complex model also exists? This paper explores this question in the domain of radiotoxicity relative to geologic disposal performance dose assessments. Criterion 1 requires that the simpler approach, radiotoxicity, must be calculated correctly. The concept of ingestion radiotoxic inventories is analogous to the inventory of toxic chemicals in other industries. From a decision analysis perspective, it is also somewhat analogous to the nuclear reactor safety concept of "passive safety. " This paper explains some of the issues in calculating radiotoxicity, motivated by the author's observations of errors in the literature: not accounting for radioactive progeny, misunderstanding natural "ore," and focusing on transuranic (TRU) isotopes without adequate attention to actinide decay products. For example, Th/~(233)U fuel cycles do have lower amounts of TRU isotopes than U/~(239)Pu fuel cycles, but that does not necessarily mean lower long-term hazard. Criterion 2 requires that the uncertainties in the more complex approach, performance dose assessments, must raise issues for the assessments' intended purposes-in which case, radiotoxic inventory may be of assistance until those issues are resolved. Performance dose assessments were developed for, and are legally the way to show, compliance with regulations, but the uncertainties are large. Less obvious is the degree to which dose assessments are applicable to other purposes-comparing fuel cycle options prior to site selection and showing the safety of a fuel cycle and waste management approach to the public. In the last sense especially, performance dose assessments are analogous to probabilistic risk assessments for nuclear reactor safety. The United States lacks a selected consensus site, selected fuel cycle approach (direct disposal versus recycling), and selected waste form. Thus, the paper does not intend to discuss all the issues with performance dose assessments but rather intends to focus on only those performance dose uncertainties that raise issues when comparing fuel cycles. Uncertainties associated with whether a generic geological environment is attractive or a specific location meets requirements are beyond the scope of this paper. Ingestion radiotoxicity correlates with heat, gamma, and inhalation radiotoxicity. Thus, options that are relatively high in ingestion radiotoxicity tend to be high in other parameters. Therefore, reduction in ingestion radiotoxicity means both that the potential source term for release is lower but also that one driving force for release (heat) is also lower. However, the most important time frames differ as heat is mainly an issue in decades and centuries after reactor discharge, but ingestion radiotoxicity is mainly an issue during longer time periods. Ingestion radiotoxicity points to the importance of actinides in long-term waste management, followed by specific fission products such as ~(99)Tc, ~(129)I, ~(93)Zr, ~(135)Cs, and ~(79)Se. TRU isotopes were important in four of five generic geologic environments recently studied independently with used fuel disposal experts as were the same fission products as noted from radiotoxicity-in part because waste assessments must include multiple exposure pathways including human intrusion and drilling into the waste. Dose calculations that were made for used fuel disposal may be misleading if extrapolated to disposal of only the remnants of used fuel separation because the chemistry of waste will differ. Radio-toxicity can be misleading if used to strictly rank order among individual isotopes if a specific disposal option is well known. Hybrid approaches that incorporate radiotoxicity and features of full performance assessments may have value.
机译:工程师经常面临一个普遍的问题,即哪种近似值适合于给定的分析任务。特别是,如果还存在更复杂的模型,那么更简单的模型何时有用?本文在相对于地质处置性能剂量评估的放射毒性领域探讨了这个问题。标准1要求必须正确计算出更简单的方法,即放射毒性。摄入放射性物质清单的概念类似于其他行业中的有毒化学物质清单。从决策分析的角度来看,它也有点类似于“被动安全”的核反应堆安全概念。本文解释了计算放射毒性的一些问题,这是由作者对文献中错误的观察引起的:不考虑放射性后代,误解天然“矿石”,并专注于铀铀(TRU)同位素,而对adequate系元素衰变产物的关注不足。例如,Th /〜(233)U燃料循环确实比U /〜(239)Pu燃料循环具有更少的TRU同位素,但这并不一定意味着更低的长期危害。标准2要求更复杂的方法(性能剂量评估)中的不确定性必须为评估的预期目的提出问题-在这种情况下,放射毒性清单可能会有所帮助,直到解决这些问题为止。制定性能剂量评估是为了确保法规符合性,并且在法律上是证明符合性的方法,但是不确定性很大。剂量评估适用于其他目的的程度不太明显,例如在选址之前比较燃料循环方案,并向公众展示燃料循环和废物管理方法的安全性。特别是在最后一个意义上,性能剂量评估类似于核反应堆安全性的概率风险评估。美国缺乏选定的共识地点,选定的燃料循环方法(直接处置与再循环)和选定的废物形式。因此,本文无意讨论性能剂量评估的所有问题,而是仅关注那些在比较燃料循环时引起问题的性能剂量不确定性。与通用地质环境是否有吸引力或特定位置是否符合要求相关的不确定性不在本文讨论范围之内。摄入的放射毒性与热量,γ和吸入的放射毒性相关。因此,摄入放射毒性相对较高的选择在其他参数上往往较高。因此,降低摄入的放射毒性意味着释放的潜在源术语较低,而且释放(热)的一种驱动力也较低。但是,最重要的时间范围有所不同,因为热量主要是在反应堆放电后数十年和数百年后才出现的问题,但是摄食放射性毒性主要是在较长时间内出现的问题。摄入放射毒性指出act系元素在长期废物管理中的重要性,其次是特定的裂变产物,例如〜(99)Tc,〜(129)I,〜(93)Zr,〜(135)Cs和〜(79)硒TRU同位素在最近与二手燃料处置专家进行独立研究的五个普通地质环境中,有四个很重要,因为裂变产物与放射毒性相同,这在一定程度上是因为废物评估必须包括多种暴露途径,包括人为入侵和对废物的钻探。如果将其推算为仅废弃燃料分离残留物的处理,则对废弃燃料进行的剂量计算可能会产生误导,因为废物的化学性质会有所不同。如果已知特定的处置方法,如果将放射毒性严格用于在各个同位素之间进行排序,则可能会产生误导。结合放射毒性和全面性能评估功能的混合方法可能有价值。

著录项

  • 来源
    《Nuclear science and engineering》 |2013年第1期|58-81|共24页
  • 作者

    Steven J. Piet;

  • 作者单位

    Idaho National Laboratory Mail Stop 3870, 2525 North Fremont, Idaho Falls, Idaho 83415;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:43:11

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号