首页> 外文期刊>Nuclear fusion >Optimization of the high harmonic ECRH scenario to extend a heating plasma parameter range in LHD
【24h】

Optimization of the high harmonic ECRH scenario to extend a heating plasma parameter range in LHD

机译:优化高谐波ECRH方案以扩展LHD中的加热等离子体参数范围

获取原文
获取原文并翻译 | 示例
       

摘要

Effectiveness of high harmonic electron cyclotron resonance heating (ECRH) was investigated by both experiments and ray-trace analyses. The conditions of both the EC wave injection and the magnetic field configuration were optimized in the large helical device. In the case of the second harmonic ordinary mode injection with a frequency of 77 GHz and with the optimized injection angle, about 30-40% absorption could be kept beyond the cut-off density of the second harmonic extraordinary (X2) mode, which is 3.7 × 10~(19) m~(-3). In the third harmonic X (X3) mode heating experiment, the dependence of the absorption rate on plasma density and temperature of the target plasma was precisely investigated and compared with the ray-trace (TRAVIS code) calculation. The calculation results of the absorption rate show fairly good agreement with the experimentally obtained ones on the plasma-parameter dependences. The maximum absorption rate in the X3 heating experiment attained approximately 40% around the electron density of 1.5 × 10~(19) m~(-3) and the electron temperature of 1.2 keV. Superposed stepwise injection from three gyrotrons with a total of 3 MW increased the central electron temperature to about 3.5 times of the initial target plasma temperature of 0.6 keV. This shows that the temperature increase improves the absorption rate of the subsequent injection.
机译:通过实验和射线迹线分析研究了高谐波电子回旋共振加热(ECRH)的有效性。在大型螺旋装置中,优化了EC波注入条件和磁场配置。对于频率为77 GHz且具有最佳注入角的二次谐波非常规模式注入,可以保持超过二次谐波非常规(X2)模式的截止密度的大约30-40%的吸收,即3.7×10〜(19)米〜(-3)在三次谐波X(X3)模式加热实验中,精确研究了吸收速率对目标密度和目标等离子体温度的依赖性,并将其与射线迹线(TRAVIS代码)计算进行了比较。吸收率的计算结果在血浆参数依赖性上与实验获得的结果相当吻合。 X3加热实验的最大吸收率在1.5×10〜(19)m〜(-3)的电子密度和1.2 keV的电子温度附近达到约40%。从三个总功率为3 MW的回旋管进行的逐步分步注入使中心电子温度升至初始目标等离子体温度0.6 keV的约3.5倍。这表明温度升高提高了后续注射的吸收速率。

著录项

  • 来源
    《Nuclear fusion》 |2015年第6期|063035.1-063035.8|共8页
  • 作者单位

    National Institute for Fusion Science, 322-6 Oroshi-Cho, Toki 509-5292, Japan;

    National Institute for Fusion Science, 322-6 Oroshi-Cho, Toki 509-5292, Japan;

    National Institute for Fusion Science, 322-6 Oroshi-Cho, Toki 509-5292, Japan;

    National Institute for Fusion Science, 322-6 Oroshi-Cho, Toki 509-5292, Japan;

    National Institute for Fusion Science, 322-6 Oroshi-Cho, Toki 509-5292, Japan;

    National Institute for Fusion Science, 322-6 Oroshi-Cho, Toki 509-5292, Japan;

    National Institute for Fusion Science, 322-6 Oroshi-Cho, Toki 509-5292, Japan;

    Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-City, Chiba 277-8561,Japan;

    Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan;

    Institute of Advanced Energy, Kyoto University, Gokasho, Uji-City, Kyoto 611-0011, Japan;

    Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, D-17491 Greifswald, Germany;

    Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, D-17491 Greifswald, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    magnetic confinement; high harmonic ECRH; gyrotron;

    机译:磁约束高谐波ECRH回旋管;
  • 入库时间 2022-08-18 00:42:33

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号