首页> 外文期刊>Nuclear fusion >Overview of ECR plasma heating experiment in the GDT magnetic mirror
【24h】

Overview of ECR plasma heating experiment in the GDT magnetic mirror

机译:GDT磁镜中的ECR等离子加热实验概述

获取原文
获取原文并翻译 | 示例
       

摘要

This paper summarizes the results of experiments on electron cyclotron resonance heating (ECRH) of plasma obtained at the axially symmetric magnetic mirror device gas dynamic trap (GDT) (Budker Institute, Novosibirsk). The main achievement is the demonstration of plasma discharges with extremely high temperatures of bulk electrons. According to the Thomson scattering measurements, the on-axis electron temperature averaged over several sequential shots is 660±50 eV with peak values exceeding 900 eV in a few shots. This corresponds to an at least threefold increase as compared to previous experiments both at the GDT and at other comparable machines, thus demonstrating the maximum quasi-stationary (~0.6 ms) electron temperature achieved in open traps. The breakthrough is made possible with the successful implementation of a sophisticated ECRH scheme in addition to standard heating by neutral beams (NBs). Another important result is the demonstration of the significantly increased lifetime of NB-driven fast particles with the application of ECRH, leading to a 30% higher plasma energy content at the end of the discharge. All available data including the previously demonstrated possibility of plasma confinement with β as high as 60%, allows us to consider fusion applications of axially symmetric magnetic mirror machines on a realistic basis.
机译:本文总结了在轴向对称磁镜装置气体动态阱(GDT)(新喀布尔市巴德克研究所)获得的等离子体电子回旋共振加热(ECRH)实验的结果。主要成就是演示了具有极高体电子温度的等离子体放电。根据汤姆森散射测量,几次连续发射的平均轴上电子温度为660±50 eV,几次发射的峰值超过900 eV。与以前在GDT和其他类似机器上进行的实验相比,这至少增加了三倍,从而证明了在开放阱中实现的最大准平稳(〜0.6 ms)电子温度。除了通过中性束(NB)进行标准加热外,成功实施复杂的ECRH方案也使突破成为可能。另一个重要的结果是证明了使用ECRH可以显着延长NB驱动的快速颗粒的使用寿命,从而在放电结束时将等离子体能量含量提高30%。所有可用的数据,包括先前证明的高达60%的β等离子限制的可能性,使我们可以在现实的基础上考虑轴对称磁镜机器的融合应用。

著录项

  • 来源
    《Nuclear fusion》 |2015年第5期|053009.1-053009.12|共12页
  • 作者单位

    Budker Institute of Nuclear Physics (BINP), Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia,Novosibirsk State University, Novosibirsk, Russia;

    Budker Institute of Nuclear Physics (BINP), Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia,Novosibirsk State University, Novosibirsk, Russia;

    Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia;

    Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia,Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia;

    Budker Institute of Nuclear Physics (BINP), Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia,Novosibirsk State University, Novosibirsk, Russia;

    Budker Institute of Nuclear Physics (BINP), Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia;

    Budker Institute of Nuclear Physics (BINP), Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia,Novosibirsk State University, Novosibirsk, Russia;

    Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia;

    Budker Institute of Nuclear Physics (BINP), Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia,Novosibirsk State University, Novosibirsk, Russia;

    Novosibirsk State University, Novosibirsk, Russia;

    Budker Institute of Nuclear Physics (BINP), Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia,Novosibirsk State University, Novosibirsk, Russia;

    Budker Institute of Nuclear Physics (BINP), Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia;

    Budker Institute of Nuclear Physics (BINP), Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia,Novosibirsk State University, Novosibirsk, Russia;

    Budker Institute of Nuclear Physics (BINP), Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia,Novosibirsk State University, Novosibirsk, Russia;

    Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia,Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia;

    Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia;

    Budker Institute of Nuclear Physics (BINP), Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia,Novosibirsk State University, Novosibirsk, Russia;

    Budker Institute of Nuclear Physics (BINP), Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia,Novosibirsk State University, Novosibirsk, Russia;

    Novosibirsk State University, Novosibirsk, Russia;

    Budker Institute of Nuclear Physics (BINP), Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    mirror trap; gas dynamic trap; electron-cyclotron resonance heating; longitudinal confinement;

    机译:镜陷阱气体动态阱电子回旋共振加热纵向限制;
  • 入库时间 2022-08-18 00:42:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号