首页> 外文期刊>Nuclear Engineering and Design >Hydro-thermal-mechanical analysis of thermal fatigue in a mixing tee
【24h】

Hydro-thermal-mechanical analysis of thermal fatigue in a mixing tee

机译:混合三通中热疲劳的水热力学分析

获取原文
获取原文并翻译 | 示例
       

摘要

This paper covers work carried out by the CEA to study the mechanisms leading to cracking of piping as a result of thermal loading in flow mixing zones. The main goal of the work is to analyse, by calculation, the thermal loading caused by turbulent mixing in tees and to understand the mechanism of initiation and propagation of cracks in such components. This work is supported by IRSN. This thermal fatigue phenomenon is still not fully understood. One of the main obstacles to its understanding resides in the multi-domain nature of the loading and associated damage, involving three complementary scientific disciplines: thermal-hydraulic field, thermo-mecham'cal field and materials science. This paper describes the approach adopted by the CEA to establish natural mechanisms (turbulence, pulsing and instability) which might be the cause of any substantial thermo-mechanical loading in the piping. Although turbulence may be the cause of the thermal stripping (presence of high-frequency thermal fluctuations on the inner surface of the component), it cannot alone explain the propagation of deep cracks. The main reason is the "high-pass filter" effect of convection. The wall cannot be subjected to convection-related thermal fluctuations and frequencies less than the inverse of the turbulence transit time. A straightforward frequency-based analysis of the loading, carried out as a first stage, made it possible to establish the limits of the loading created by these high-frequency events. However, turbulence can give rise to flow instability (such as pulsing) of lower frequency. But this cannot explain everything. The geometry upstream of the tee, particularly the sequence of straight sections and bends can, in certain cases, damp the pulses or greatly amplify them. The use of suitable thermal-hydraulic modelling is discussed in the second part of this article. The final result of the thermo-hydro-mechanical link-up on application to the complex 3D geometry of the Civaux unit 1 case (which includes a mixing tee, bends and straight sections) enabled the observations made in this plant case to be highlighted and correlated. One of the originalities of this study is to carry out the overall analysis (thermal-hydraulic and thermo-mechanical) with a single computer code, the CAST3M code developed by the CEA.
机译:本文涵盖了CEA开展的工作,以研究由于混流区中的热负荷导致管道破裂的机理。这项工作的主要目的是通过计算分析由三通管内湍流混合引起的热负荷,并了解此类零件中裂纹的产生和传播机理。 IRSN支持这项工作。这种热疲劳现象仍未完全理解。对其理解的主要障碍之一在于载荷的多域性质和相关的损害,涉及三个互补的科学学科:热工液压领域,热力学领域和材料科学。本文介绍了CEA用来建立自然机制(湍流,脉动和不稳定性)的方法,这些自然机制可能是管道中大量热机械负荷的原因。尽管湍流可能是热剥离的原因(部件内表面存在高频热波动),但它不能单独解释深层裂纹的扩展。主要原因是对流的“高通滤波器”效应。壁不能承受与对流有关的热波动,其频率也不能小于湍流通过时间的倒数。在第一阶段进行的基于负载的直接基于频率的分析使建立由这些高频事件产生的负载的极限成为可能。但是,湍流会引起较低频率的流动不稳定性(例如脉冲)。但是,这不能解释一切。 T形管上游的几何形状,尤其是笔直的部分和弯曲的序列,在某些情况下会衰减脉冲或大大放大脉冲。本文的第二部分讨论了合适的热工液压模型的使用。将热-水力-机械连接应用于Civaux单元1箱(包括混合三通,弯头和直管段)的复杂3D几何结构的最终结果使该工厂箱中的观察结果更加突出,并且相关的。这项研究的独创性之一是使用单个计算机代码(由CEA开发的CAST3M代码)进行整体分析(热工液压和热工机械)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号