首页> 外文期刊>Nuclear Engineering and Design >Inverse uncertainty quantification of TRACE physical model parameters using sparse gird stochastic collocation surrogate model
【24h】

Inverse uncertainty quantification of TRACE physical model parameters using sparse gird stochastic collocation surrogate model

机译:稀疏网格随机搭配替代模型对TRACE物理模型参数的不确定度反量化

获取原文
获取原文并翻译 | 示例
       

摘要

Within the BEPU (Best Estimate plus Uncertainty) methodology uncertainties must be quantified in order to prove that the investigated design remains within acceptance criteria. For best-estimate system thermal-hydraulics codes like TRACE and RELAP5, significant uncertainties come from the closure laws which are used to describe transfer terms in the balance equations. The accuracy and uncertainty information of these correlations are usually unknown to the code users, which results in the user simply ignoring or describing them using expert opinion or personal judgment during uncertainty and sensitivity analysis. The purpose of this paper is to replace such ad-hoc expert judgment of the uncertainty information of TRACE physical model parameters with inverse Uncertainty Quantification (UQ) based on OECD/NRC BWR Full-size Fine-Mesh Bundle Tests (BFBT) benchmark steady-state void fraction data. Inverse UQ seeks statistical descriptions of the physical model random input parameters that are consistent with the experimental data. Inverse UQ always captures the uncertainty of its estimates rather than merely determining point estimates of the best-fit input parameters. Bayesian analysis is used to establish the inverse UQ problems based on experimental data, with systematic and rigorously derived surrogate models based on Sparse Gird Stochastic Collocation (SGSC). Global sensitivity analysis including Sobol' indices and correlation coefficients are used to identify the important TRACE input parameters. Several adaptive Markov Chain Monte Carlo (MCMC) sampling techniques are investigated and implemented to explore the posterior probability density functions. This research solves the problem of lack of uncertainty information for TRACE physical model parameters for the closure relations. The quantified uncertainties are necessary for future uncertainty and sensitivity study of TRACE code in nuclear reactor system design and safety analysis. (C) 2017 Elsevier B.V. All rights reserved.
机译:在BEPU(最佳估计加不确定度)方法中,必须对不确定度进行量化,以证明所研究的设计仍在可接受的标准之内。对于TRACE和RELAP5之类的最佳估计系统热工代码,闭包定律有很大的不确定性,这些定律用于描述平衡方程中的传递项。这些相关性的准确性和不确定性信息通常对于代码用户而言是未知的,这导致用户在不确定性和敏感性分析过程中仅使用专家意见或个人判断就可以忽略或描述它们。本文旨在基于OECD / NRC BWR全尺寸细网状捆绑试验(BFBT)基准稳定模型,用逆不确定性量化(UQ)代替对TRACE物理模型参数不确定性信息的临时专家判断。状态无效分数数据。逆UQ寻求与实验数据一致的物理模型随机输入参数的统计描述。逆UQ总是捕获其估计的不确定性,而不仅仅是确定最佳输入参数的点估计。贝叶斯分析用于基于实验数据建立反UQ问题,并基于稀疏Gird随机搭配(SGSC)系统地,严格地得出替代模型。包括Sobol指数和相关系数在内的全局灵敏度分析用于识别重要的TRACE输入参数。研究并实现了几种自适应马尔可夫链蒙特卡洛(MCMC)采样技术,以探索后验概率密度函数。该研究解决了闭合关系的TRACE物理模型参数缺乏不确定性信息的问题。定量不确定性对于将来在核反应堆系统设计和安全分析中对TRACE代码进行不确定性和敏感性研究是必要的。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2017年第8期|185-200|共16页
  • 作者单位

    Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA;

    Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA;

    Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA;

    Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA;

    Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:41:22

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号