首页> 外文期刊>Neurocomputing >Convergence and objective functions of noise-injected multilayer perceptrons with hidden multipliers
【24h】

Convergence and objective functions of noise-injected multilayer perceptrons with hidden multipliers

机译:带有隐藏乘法器的噪声注入多层射击的收敛性和客观函数

获取原文
获取原文并翻译 | 示例

摘要

Artificial neural networks (ANNs) are known to be sensitive to the initial setting of parameters and the network architecture, such as the number of hidden nodes in multilayer perceptron (MLP). In this paper, we focus on a network structure which can help to find the proper number of hidden nodes in MLP. In this structure, so called Multilayer Perceptrons with Hidden Multipliers (MLPHM), each of the hidden nodes is associated with a tunable "gate" multiplier. With a specific regularization term, each gate tends to be opened or closed completely at the end of the training, and finally a pruned network is obtained. To study the fault tolerance and to improve the generalization of MLPHM, a noise-injected training scheme is proposed, with both multiplicative noise and additive noise taken into consideration. The objective functions and convergence theorems of the noise-injected training algorithms are obtained, and the latter have been verified by simulations. Applications to several UCI datasets have demonstrated that the proposed algorithms have efficient pruning ability and superior generalization ability. (c) 2020 Elsevier B.V. All rights reserved.
机译:已知人工神经网络(ANNS)对参数和网络架构的初始设置敏感,例如多层Perceptron(MLP)中的隐藏节点的数量。在本文中,我们专注于网络结构,可以帮助找到MLP中的正确数量的隐藏节点。在该结构中,所以所谓的具有隐藏乘法器(MLPHM)的多层的感知器(MLPHM),每个隐藏节点与可调谐的“门”乘法器相关联。利用特定的正则化术语,在训练结束时倾向于在训练结束时完全打开或关闭每个浇口,并且最后获得修剪网络。为了研究容错和改善MLPHM的概括,提出了一种噪声注入的训练方案,考虑了乘法噪声和添加剂噪声。获得了噪声注入训练算法的目标功能和收敛定理,并且通过模拟验证了后者。对于几个UCI数据集的应用已经证明,所提出的算法具有有效的修剪能力和卓越的泛化能力。 (c)2020 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第10期|796-812|共17页
  • 作者单位

    China Univ Petr East China Coll Sci Qingdao 266580 Peoples R China;

    China Univ Petr East China Coll Sci Qingdao 266580 Peoples R China;

    China Univ Petr East China Sch Petr Engn Qingdao 266580 Peoples R China;

    China Univ Petr East China Coll Sci Qingdao 266580 Peoples R China;

    China Univ Petr East China Coll Sci Qingdao 266580 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Convergence; Fault tolerant control; Multilayer perceptron; Pruning; Regularization;

    机译:融合;容错控制;多层的感觉;修剪;正规化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号