首页> 外文期刊>Neurocomputing >A parallel multi-module deep reinforcement learning algorithm for stock trading
【24h】

A parallel multi-module deep reinforcement learning algorithm for stock trading

机译:股票交易的平行多模块深加固学习算法

获取原文
获取原文并翻译 | 示例

摘要

In recent years, deep reinforcement learning (DRL) algorithm has been widely used in algorithmic trading. Many fully automated trading systems or strategies have been built using DRL agents, which integrate price prediction and trading signal generation in one system. However, the previous agents extract the current state from the market data without considering the long-term market historical trend when making decisions. Besides, plenty of related and useful information has not been considered. To address these two problems, we propose a novel model named Parallel Multi-Module Deep Reinforcement Learning (PMMRL) algorithm. Here, two parallel modules are used to extract and encode the feature: one module employing Fully Connected (FC) layers is used to learn the current state from the market data of the traded stock and the fundamental data of the issuing company; another module using Long Short-Term Memory (LSTM) layers aims to detect the long-term historical trend of the market. The proposed model can extract features from the whole environment by the above two modules simultaneously, taking the advantages of both LSTM and FC layers. Extensive experiments on China stock market illustrate that the proposed PMMRL algorithm achieves a higher profit and a lower drawdown than several state-of-the-art algorithms.(c) 2021 Elsevier B.V. All rights reserved.
机译:近年来,深增强学习(DRL)算法已广泛用于算法交易。使用DRL代理商建立了许多全自动交易系统或策略,该系统在一个系统中集成了价格预测和交易信号。然而,前以前的代理商从市场数据提取当前状态,而不考虑在做出决定时的长期市场历史趋势。此外,尚未考虑大量相关和有用的信息。为了解决这两个问题,我们提出了一种名为Sprished Multi-Mode Deep Reentive学习(PMMRL)算法的新型模型。这里,两个并联模块用于提取和编码特征:采用完全连接(FC)层的一个模块用于从交易库存的市场数据和发行公司的基本数据中学习当前状态;使用长短期内存(LSTM)层的另一个模块旨在检测市场的长期历史趋势。所提出的模型可以同时通过上述两个模块从整个环境中提取特征,从而采用LSTM和FC层的优点。对中国股市的广泛实验表明,所提出的PMMRL算法达到更高的利润和低于若干最先进的算法的较低次数。(c)2021 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第18期|290-302|共13页
  • 作者单位

    Xi An Jiao Tong Univ Sch Math & Stat 28 Xianning West Rd Xian Shannxi Peoples R China;

    Xi An Jiao Tong Univ Sch Math & Stat 28 Xianning West Rd Xian Shannxi Peoples R China;

    Xi An Jiao Tong Univ Sch Math & Stat 28 Xianning West Rd Xian Shannxi Peoples R China;

    Xi An Jiao Tong Univ Sch Math & Stat 28 Xianning West Rd Xian Shannxi Peoples R China;

    Xi An Jiao Tong Univ Sch Math & Stat 28 Xianning West Rd Xian Shannxi Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Parallel multi-module; Reinforcement learning; Capital asset pricing model; Long short-term memory;

    机译:并行多模块;钢筋学习;资本资产定价模型;长期内存;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号