首页> 外文期刊>Neurocomputing >A lowlight image enhancement method learning from both paired and unpaired data by adversarial training
【24h】

A lowlight image enhancement method learning from both paired and unpaired data by adversarial training

机译:通过对抗训练从配对和未配对数据中学习的LOMLIGHT图像增强方法

获取原文
获取原文并翻译 | 示例

摘要

In recent years, deep learning has been widely used in the field of lowlight image enhancement. In this paper, we propose a novel deep-learning-based lowlight image enhancement method, which could learn from both paired and unpaired data, and perform end-to-end contrast enhancement and noise reduction simultaneously. Concretely, we first employ a multi-level content loss on paired synthesized data for training enhancer to recover detail better. Then, we propose a GAN-based domain adaptation mechanism, which applies an adversarial training strategy and a novel gamma-correction-based self-supervised content loss on abundant unpaired real data, for training the enhancer to perform better on real lowlight images. Furthermore, a Patch-GAN-based noise reduction mechanism is proposed to adversarially train the enhancer to better reduce noise in real lowlight images. Finally, we improve the enhancer by introduce attention mechanism and global feature to original U-net, make it more suitable for lowlight image enhancement task. We conduct experiments on several common datasets and the results show that our method outperforms other state-of-the-arts under a variety of image quality assessment metrics. And when applied as pre-processing module, our method can improve the classification accuracy on lowlight dataset by 1.7%, outperforming other methods too.(c) 2020 Elsevier B.V. All rights reserved.
机译:近年来,深入学习已被广​​泛应用于LOW LINEGHT图像增强领域。在本文中,我们提出了一种新的基于深度学习的LOW光图像增强方法,其可以从配对和未配对的数据中学习,并同时执行端到端的对比度增强和降噪。具体地,我们首先在配对的合成数据上使用多级内容丢失,用于培训增强剂以更好地恢复细节。然后,我们提出了一种基于GaN的域适应机制,该机制应用于丰富的未配对实际数据的侵犯训练策略和新的伽马修正的自我监督内容损失,用于培训增强器在真正的LOWLIGHT图像上表现更好。此外,提出了一种基于补丁GaN的降噪机制,以对增强器进行对接地训练增强器,以更好地减少Real Lowl图像中的噪声。最后,我们通过将注意力机制和全局功能引入原始U-Net来改善增强器,使其更适合LeeLight Image Enhancement任务。我们对几个常见数据集进行实验,结果表明,我们的方法在各种图像质量评估指标下优于其他最先进的。当应用于预处理模块时,我们的方法可以提高LOWLIGHT数据集的分类准确性1.7%,优于其他方法。(c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第14期|83-95|共13页
  • 作者单位

    Huazhong Univ Sci & Technol Sch Opt & Elect Informat Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Sch Opt & Elect Informat Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Sch Opt & Elect Informat Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Sch Opt & Elect Informat Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Sch Opt & Elect Informat Wuhan 430074 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Lowlight image enhancement; Noise reduction; Paired data; Unpaired data; Generative adversarial network;

    机译:LOWLIGHT图像增强;降噪;配对数据;未配对数据;生成的对抗网络;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号