首页> 外文期刊>Neurocomputing >Top-aware reinforcement learning based recommendation
【24h】

Top-aware reinforcement learning based recommendation

机译:基于顶视感的强化学习推荐

获取原文
获取原文并翻译 | 示例

摘要

Reinforcement learning (RL) techniques have recently been introduced to recommender systems. Most existing research works focus on designing policy and learning algorithms of the recommender agent but seldom care about the top-aware issue, i.e., the performance on the top positions is not satisfying, which is crucial for real applications. To address the drawback, we propose a Supervised deep Reinforcement learning Recommendation framework named as SRR. Within this framework, we utilize a supervised learning (SL) model to partially guide the learning of recommendation policy, where the supervision signal and RL signal are jointly employed and updated in a complementary fashion. We empirically find that suitable weak supervision helps to balance the immediate reward and the long-term reward, which nicely addresses the top-aware issue in RL based recommendation. Moreover, we perform a further investigation on how different supervision signals impact on recommendation policy. Extensive experiments are carried out on two real-world datasets under both the offline and simulated online evaluation settings, and the results demonstrate that the proposed methods indeed resolve the top-aware issue without much performance sacrifice in the long-run, compared with the state-of-the-art methods. (C) 2020 Elsevier B.V. All rights reserved.
机译:最近引入了强化学习(RL)技术来推荐给推荐系统。大多数现有的研究工作侧重于设计推荐代理的政策和学习算法,但很少关注最重要的问题,即顶部位置的性能不符合,这对于真实应用至关重要。为了解决缺点,我们提出了一个被称为SRR的监督深度强化学习推荐框架。在此框架内,我们利用监督学习(SL)模型来部分指导推荐政策的学习,其中监督信号和RL信号是共同使用和更新的互补方式。我们经验地发现合适的弱势监督有助于平衡立即奖励和长期奖励,这很好地解决了基于RL的推荐中的最重要的问题。此外,我们进一步调查了不同监督信号对建议政策的影响。在离线和模拟在线评估设置下,在两个现实世界数据集中进行了广泛的实验,结果表明,建议的方法确实在长期的长期牺牲的情况下解决了最重要的问题-Of-最现实的方法。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第5期|255-269|共15页
  • 作者单位

    Harbin Inst Technol Shenzhen Key Lab Internet Informat Collaborat Shenzhen 518055 Peoples R China;

    Huawei Noahs Ark Lab Shenzhen Peoples R China;

    Huawei Noahs Ark Lab Shenzhen Peoples R China;

    Harbin Inst Technol Shenzhen Key Lab Internet Informat Collaborat Shenzhen 518055 Peoples R China;

    Harbin Inst Technol Shenzhen Key Lab Internet Informat Collaborat Shenzhen 518055 Peoples R China;

    Huawei Noahs Ark Lab Shenzhen Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Recommendation; Top-aware; Reinforcement learning;

    机译:推荐;众所周知;加强学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号