首页> 外文期刊>Neurocomputing >Stochasticity and robustness in spiking neural networks
【24h】

Stochasticity and robustness in spiking neural networks

机译:尖峰神经网络的随机性和鲁棒性

获取原文
获取原文并翻译 | 示例

摘要

Despite drawing inspiration from biological systems which are inherently noisy and variable, artificial neural networks have been shown to require precise weights to carry out the task which they are trained to accomplish. This creates a challenge when adapting these artificial networks to specialized execution platforms which may encode weights in a manner which restricts their accuracy and/or precision.Reflecting back on the non-idealities which are observed in biological systems, we investigated the effect these properties have on the robustness of spiking neural networks under perturbations to weights. First, we examined techniques extant in conventional neural networks which resemble noisy processes, and postulated they may produce similar beneficial effects in spiking neural networks. Second, we evolved a set of spiking neural networks utilizing biological non-idealities to solve a pole-balancing task, and estimated their robustness. We showed it is higher in networks using noisy neurons, and demon-strated that one of these networks can perform well under the variance expected when a hafnium oxide based resistive memory is used to encode synaptic weights. Lastly, we trained a series of networks using a surrogate gradient method on the MNIST classification task. We confirmed that these networks demonstrate similar trends in robustness to the evolved networks. We discuss these results and argue that they display empirical evidence supporting the role of noise as a regularizer which can increase network robustness. (C) 2020 Elsevier B.V. All rights reserved.
机译:尽管绘制了生物系统的灵感,但是,已经显示了人工神经网络的人工神经网络需要精确的重量来执行他们培训以实现的任务。当将这些人为网络适应专业的执行平台时,这会产生挑战,该专业执行平台以限制其准确性和/或精度的方式编码权重。重新选择在生物系统中观察到的非理想,我们调查了这些性质的效果关于捕获扰动对重量刺激神经网络的鲁棒性。首先,我们在传统的神经网络中检查了类似噪声过程的传统神经网络的技术,并且假定它们可能在尖峰神经网络中产生类似的有益效果。其次,我们进化了一套利用生物非理想来解决杆平衡任务的一套尖刺神经网络,并估计其鲁棒性。我们在使用嘈杂神经元的网络中显示出较高,并且噬误剧的那个网络中的一个可以在使用氧化铪基电阻存储器来编码突触权重的方差下进行良好。最后,我们在Mnist分类任务上使用代理渐变方法培训了一系列网络。我们确认这些网络展示了对演进网络的鲁棒性的类似趋势。我们讨论了这些结果,并争辩说,他们展示了支持噪声作用作为常规器的实证证据,这可以增加网络稳健性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号