首页> 外文期刊>Neurocomputing >Global stability analysis of S-asymptotically ω-periodic oscillation in fractional-order cellular neural networks with time variable delays
【24h】

Global stability analysis of S-asymptotically ω-periodic oscillation in fractional-order cellular neural networks with time variable delays

机译:具有时间可变延迟的分数级蜂窝神经网络中S-渐关节ω周周期振荡的全局稳定性分析

获取原文
获取原文并翻译 | 示例

摘要

A delayed cellular neural networks with Caputo fractional-order derivative has been discussed in this paper. Firstly, the existence and uniqueness of S-asymptotically omega-periodic oscillation of the model are investigated by some important features of Mittag-Leffler functions and contraction mapping principle. Secondly, global asymptotical stability of the model is also studied by using Laplace transform, comparison principle and stability theorem of linear delayed Caputo fractional-order differential equations. Some better results are derived to improve and extend a few existing research findings. The research thoughts in this literature could be applied to research other fractional-order models in neural networks and physical areas. (c) 2020 Elsevier B.V. All rights reserved.
机译:本文讨论了具有Caputo分数阶衍生物的延迟蜂窝神经网络。首先,通过Mittag-Leffler功能的一些重要特征和收缩映射原理来研究模型的S-渐近欧米茄周期性振荡的存在和唯一性。其次,通过使用Laplace变换,线性延迟Caputo分数级微分方程的Laplace变换,比较原理和稳定性定理,还研究了模型的全局渐近稳定性。获得了一些更好的结果,以改善和扩展一些现有的研究结果。本文中的研究思想可以应用于在神经网络和物理区域中研究其他分数级模型。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号