首页> 外文期刊>Neurocomputing >State estimation for neural networks with two additive time-varying delay components using delay-product-type augmented Lyapunov-Krasovskii functional
【24h】

State estimation for neural networks with two additive time-varying delay components using delay-product-type augmented Lyapunov-Krasovskii functional

机译:具有两个累加时变时滞成分的神经网络的状态估计,使用时滞积类型增强的Lyapunov-Krasovskii函数

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on the state estimation issue of neural networks with two additive time-varying delay components. By constructing a suitable augmented Lyapunov-Krasovskii functional, more time delay information is considered. Using the recently developed reciprocally convex inequality, some reciprocally convex combinations can be estimated more closely. The design conditions of state estimators are expressed as linear matrix inequalities (LMIs). The delay-product-type Lyapunov-Krasovskii functional is used to further reduce the conservativeness. With the help of state estimation method, the stability conditions of neural networks with two additive time-varying delay components are also developed. Finally, two numerical examples widely used in the literature show the effectiveness of the proposed method. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文着重研究具有两个附加时变延迟分量的神经网络的状态估计问题。通过构造合适的增强Lyapunov-Krasovskii函数,可以考虑更多的时延信息。使用最近发展的倒凸不等式,可以更精确地估计一些倒凸组合。状态估计器的设计条件表示为线性矩阵不等式(LMI)。延迟积类型的Lyapunov-Krasovskii函数用于进一步降低保守性。借助状态估计方法,还开发了具有两个加法时变延迟分量的神经网络的稳定性条件。最后,在文献中广泛使用的两个数值示例证明了该方法的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第20期|155-169|共15页
  • 作者

    Zhou Jie; Zhao Tao;

  • 作者单位

    Xihua Univ, Sch Comp & Software Engn, Chengdu 610039, Sichuan, Peoples R China;

    Sichuan Univ, Coll Elect Engn & Informat Technol, Chengdu 610065, Sichuan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Neural network; Time-delay; State estimation; Linear matrix inequalities;

    机译:神经网络;时滞;状态估计;线性矩阵不等式;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号