首页> 外文期刊>Neurocomputing >A novel variational model for noise robust document image binarization
【24h】

A novel variational model for noise robust document image binarization

机译:噪声鲁棒文档图像二值化的新型变分模型

获取原文
获取原文并翻译 | 示例

摘要

Binarization is a fundamental problem in document image analysis systems. Different from current thresholding techniques, a novel variational model is proposed for noise robust document image binarization in this work, which is inspired by two classical variational models that have been successfully applied in image segmentation and denoising. In our variational model, the energy functional consists of three terms: data fidelity term, binary classification term and regularization term. As a result, the proposed model is capable of performing image binarization and suppressing noise simultaneously. Concretely, we firstly design a variational model for the original document image, the minimizer of which is our desired binarization result. Secondly, the gradient descent flow equation of our model is derived by means of variational principle. Lastly, a simple finite difference scheme, time forward and space center difference, is employed to solve the gradient descent flow equation. Extensive experiments are conducted on three types of document image datasets to validate our model qualitatively and quantitatively. The experiment results not only demonstrate the effectiveness of our approach, but also verify its noise and illumination robustness. (C) 2018 Elsevier B.V. All rights reserved.
机译:二值化是文档图像分析系统中的一个基本问题。与当前的阈值技术不同,本文提出了一种用于噪声鲁棒文档图像二值化的新颖变分模型,该模型是由两个成功应用于图像分割和去噪的经典变分模型启发而来的。在我们的变分模型中,能量函数由三个术语组成:数据保真度术语,二进制分类术语和正则化术语。结果,提出的模型能够执行图像二值化并同时抑制噪声。具体而言,我们首先为原始文档图像设计一个变分模型,其最小化值是我们期望的二值化结果。其次,利用变分原理推导了本模型的梯度下降流方程。最后,采用简单的有限差分方案,即时间前移和空间中心差分,来求解梯度下降流方程。对三种类型的文档图像数据集进行了广泛的实验,以定性和定量地验证我们的模型。实验结果不仅证明了我们方法的有效性,而且验证了其噪声和照明鲁棒性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号