首页> 外文期刊>Neurocomputing >A novel method for graph matching based on belief propagation
【24h】

A novel method for graph matching based on belief propagation

机译:基于置信度传播的图匹配新方法

获取原文
获取原文并翻译 | 示例

摘要

Graph matching is a fundamental NP-problem in computer vision and pattern recognition. In this paper, we propose a robust approximate graph matching method. The match between two graphs is formulated as an optimization problem and a novel energy function that performs random sample consensus (RANSAC) checking on the max-pooled supports is proposed. Then a belief propagation(BP) algorithm, which can assemble the spatial supports of the local neighbors in the context of the given points, is used to minimize the energy function. To achieve the one-to-(at most)-one matching constraint, we present a method for removing bad matches based on the topological structure of the graphs. Experimental results demonstrate that the proposed method outperforms other state-of-the-art graph matching methods in matching accuracy. (C) 2018 Elsevier B.V. All rights reserved.
机译:图形匹配是计算机视觉和模式识别中的基本NP问题。在本文中,我们提出了一种鲁棒的近似图匹配方法。将两个图之间的匹配公式化为一个优化问题,并提出了一种新的能量函数,该函数对最大池支撑进行随机样本一致性(RANSAC)检查。然后,可以在给定点的上下文中组合局部邻居的空间支撑的置信传播(BP)算法用于最小化能量函数。为了实现一对多(最多)匹配约束,我们提出了一种基于图的拓扑结构去除不良匹配的方法。实验结果表明,所提出的方法在匹配精度方面优于其他最新的图形匹配方法。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第24期|131-141|共11页
  • 作者单位

    Univ Jinan, Shandong Prov Key Lab Network Based Intelligent C, Jinan 250022, Shandong, Peoples R China;

    Univ Jinan, Shandong Prov Key Lab Network Based Intelligent C, Jinan 250022, Shandong, Peoples R China;

    Univ Jinan, Shandong Prov Key Lab Network Based Intelligent C, Jinan 250022, Shandong, Peoples R China;

    Univ Jinan, Shandong Prov Key Lab Network Based Intelligent C, Jinan 250022, Shandong, Peoples R China;

    Shandong Univ, Sch Comp Sci & Technol, Jinan 250001, Shandong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Graph matching; Energy minimization; Random sample consensus; Max-pooled supports; Belief propagation; One-to-one match;

    机译:图匹配;能量最小化;随机样本共识;最大池支持;信念传播;一对一匹配;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号