首页> 外文期刊>Neurocomputing >Neural inverse optimal control for discrete-time impulsive systems
【24h】

Neural inverse optimal control for discrete-time impulsive systems

机译:离散时间脉冲系统的神经逆最优控制

获取原文
获取原文并翻译 | 示例

摘要

Impulsive systems describe processes with at least one state variable is impulsively changeable. The design of optimal control policies in impulsive systems is a complex task. In order to relax the solution for the Hamilton-Jacobi-Bellman equation, a meaningful cost functional can be proposed a posteriori in the inverse optimal problem. The main contribution of this paper is a neural inverse optimal control for discrete-time impulsive systems. Control policies for discrete-time impulsive systems are derived by combining inverse optimal control into a recurrent high order neural network (RHONN) trained with the Extended Kalman filter (EKF). The neural network avoids the development of a mathematical model to represent the studied system. For illustration, we apply the proposed neurocontrol to personalized drug treatment in influenza infection disease, whose nonlinear model is included and described for completeness. The robustness of the proposed framework is tested through Monte Carlo simulations. (C) 2018 Elsevier B.V. All rights reserved.
机译:脉冲系统描述了具有至少一个状态变量的过程可脉冲改变的过程。脉冲系统中最优控制策略的设计是一项复杂的任务。为了放宽Hamilton-Jacobi-Bellman方程的解,可以在逆最优问题中提出有意义的代价函数。本文的主要贡献是离散时间脉冲系统的神经逆最优控制。离散时间脉冲系统的控制策略是通过将逆最优控制组合到使用扩展卡尔曼滤波器(EKF)训练的递归高阶神经网络(RHONN)中来得出的。神经网络避免了开发代表所研究系统的数学模型。为了说明,我们将拟议的神经控制应用于流感感染疾病的个性化药物治疗,其非线性模型已包括在内并进行了完整描述。通过蒙特卡洛模拟测试了所提出框架的鲁棒性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号