首页> 外文期刊>Neurocomputing >Sampled FLDA for face recognition with single training image per person
【24h】

Sampled FLDA for face recognition with single training image per person

机译:样本FLDA用于人脸识别,每人只有一张训练图像

获取原文
获取原文并翻译 | 示例

摘要

The Fisherface is one of the most successful face recognition methods, which however, cannot be directly applied to face recognition where only one sample image per person is available for training. In this paper, a method is proposed to obtain multiple training samples from a single face image by sampling, and then Fisher linear discriminant analysis (FLDA) is applied to the set of newly produced samples. Experimental results on the ORL face database show that the proposed method is feasible and has higher recognition performance than E(PC)~2A and SVD perturbation algorithms.
机译:Fisherface是最成功的人脸识别方法之一,但是,如果每个人只有一个样本图像可用于训练,则无法直接应用于人脸识别。本文提出了一种通过采样从单个人脸图像中获取多个训练样本的方法,然后将Fisher线性判别分析(FLDA)应用于新生成的样本集。在ORL人脸数据库上的实验结果表明,与E(PC)〜2A和SVD扰动算法相比,该方法是可行的,并且具有更高的识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号