首页> 外文期刊>Neurocomputing >A reformative kernel Fisher discriminant algorithm and its application to face recognition
【24h】

A reformative kernel Fisher discriminant algorithm and its application to face recognition

机译:一种改进的核Fisher判别算法及其在人脸识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a reformative kernel Fisher discriminant (KFD) algorithm with fuzzy set theory is studied. The KFD algorithm is effective to extract nonlinear discriminative features of input samples using the kernel trick. However, the conventional KFD algorithm assumes the same level of relevance of each sample to the corresponding class. In this paper, a fuzzy kernel Fisher discriminant (FKFD) algorithm is proposed. Distribution information of samples is represented with fuzzy membership degree and this information is utilized to redefine corresponding scatter matrices which are different to the conventional KFD algorithm and effective to extract discriminative features from overlapping (outlier) samples. Experimental results on the ORL face database demonstrate the effectiveness of the proposed method.
机译:本文研究了一种基于模糊集理论的改进型核Fisher判别式(KFD)算法。使用内核技巧,KFD算法可有效提取输入样本的非线性判别特征。但是,传统的KFD算法假定每个样本与相应类别的相关程度相同。本文提出了一种模糊核Fisher判别式(FKFD)算法。样本的分布信息用模糊隶属度表示,并且该信息用于重新定义与常规KFD算法不同的有效散射矩阵,并且可以有效地从重叠(离群)样本中提取判别特征。在ORL人脸数据库上的实验结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号