首页> 外文期刊>Neurocomputing >Accurate Short-term Wind Speed Prediction By Exploiting Diversity In Input Data Using Banks Of Artificial Neural Networks
【24h】

Accurate Short-term Wind Speed Prediction By Exploiting Diversity In Input Data Using Banks Of Artificial Neural Networks

机译:通过使用人工神经网络库利用输入数据中的多样性来进行准确的短期风速预测

获取原文
获取原文并翻译 | 示例

摘要

Wind speed prediction is a very important part of wind parks management. Currently, hybrid physical-statistical wind speed forecasting models are used to this end, some of them using neural networks as the final step to obtain accurate wind speed predictions. In this paper we propose a method to improve the performance of one of these hybrid systems, by exploiting diversity in the input data of the neural network part of the system. The diversity in the data is produced by the physical models of the system, applied with different parameterizations. Two structures of neural network banks are used to exploit the input data diversity. We will show that our method is able to improve the performance of the system, obtaining accurate wind speed predictions better than the one obtained by the system using single neural networks.
机译:风速预测是风电场管理中非常重要的一部分。目前,为此目的使用了混合物理统计风速预测模型,其中一些模型使用神经网络作为获得准确风速预测的最后一步。在本文中,我们提出了一种方法,通过利用系统神经网络部分输入数据的多样性来改善其中一个混合系统的性能。数据的多样性是由系统的物理模型产生的,并应用了不同的参数设置。神经网络库的两种结构用于开发输入数据的多样性。我们将证明,与使用单神经网络的系统相比,我们的方法能够改善系统的性能,获得准确的风速预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号