首页> 外文期刊>Neurocomputing >A Dynamic Chain-like Agent Genetic Algorithm For Global Numerical Optimization And Feature Selection
【24h】

A Dynamic Chain-like Agent Genetic Algorithm For Global Numerical Optimization And Feature Selection

机译:全局数值优化和特征选择的动态链状代理遗传算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, one novel genetic algorithm dynamic chain-like agent genetic algorithm (CAGA) is proposed for solving global numerical optimization problem and feature selection problem. The CAGA combines the chain-like agent structure with dynamic neighboring genetic operators to get higher optimization capability. An agent in chain-like agent structure represents a candidate solution to the optimization problem. Any agent interacts with neighboring agents to evolve. With dynamic neighboring genetic operators, they compete and cooperate with their neighbors, and can use knowledge to increase energies. Global numerical optimization problem and feature selection problem are the most important problems for evolutionary algorithm, especially for genetic algorithm. Hence, the experiments of global numerical optimization and feature selection are necessary to verify the performance of genetic algorithms. Corresponding experiments have been done and show that CAGA is suitable for real coding and binary coding optimization problems, and has more precise and more stable optimization results.
机译:为了解决全局数值优化问题和特征选择问题,提出了一种新颖的遗传算法动态链状代理遗传算法(CAGA)。 CAGA将链状代理结构与动态的邻近遗传算子结合在一起,以获得更高的优化能力。链状代理结构中的代理表示优化问题的候选解决方案。任何代理都与相邻代理进行交互以发展。与充满活力的邻近遗传运营商合作,他们可以与邻居竞争和合作,并可以利用知识来增加能量。全局数值优化问题和特征选择问题是进化算法,尤其是遗传算法最重要的问题。因此,进行全局数值优化和特征选择的实验对于验证遗传算法的性能是必要的。已经进行了相应的实验,表明CAGA适用于实际编码和二进制编码优化问题,并具有更精确,更稳定的优化结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号