首页> 外文期刊>Neurocomputing >Local similarity and diversity preserving discriminant projection for face and handwriting digits recognition
【24h】

Local similarity and diversity preserving discriminant projection for face and handwriting digits recognition

机译:保留局部相似度和多样性,以区别性投影来识别人脸和手写数字

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel supervised subspace learning algorithm, named local similarity and diversity preserving discriminant projection (LSDDP), is presented. LSDDP defines two weighted adjacency graphs, namely similarity graph and diversity graph. LSDDP constructs the similarity scatter and diversity scatter with the weights, which are adjustable according to the global supervisor and the local semi-supervisor information of the data. Thus LSDDP could utilize both the similarity and diversity information of the data simultaneously for dimensionality reduction. After characterizing the similarity scatter and diversity scatter, a concise feature extraction criterion arised via minimizing the difference between them and the optimal projection is obtained by performing the eigen-decomposition. Thus our method successfully addresses the SSS problem without losing any discriminating information. Finally the proposed model is verified by the face and handwriting digits recognition experiments. The experimental results on Yale, ORL and CMU-PIE face database and the LISPS handwriting digits database indicate the effectiveness of our method.
机译:本文提出了一种新颖的监督子空间学习算法,称为局部相似度和多样性保留判别投影(LSDDP)。 LSDDP定义了两个加权邻接图,即相似度图和分集图。 LSDDP构造具有权重的相似度散度和多样性散度,这些权重可根据数据的全局主管和本地半主管信息进行调整。因此,LSDDP可以同时利用数据的相似性和多样性信息进行降维。在表征相似度散布和多样性散布后,通过最小化它们之间的差异产生了简洁的特征提取准则,并且通过进行特征分解获得了最佳投影。因此,我们的方法成功解决了SSS问题,而不会丢失任何区分性信息。最后,通过面部和手写数字识别实验验证了所提出的模型。在Yale,ORL和CMU-PIE人脸数据库以及LISPS手写数字数据库上的实验结果表明了该方法的有效性。

著录项

  • 来源
    《Neurocomputing》 |2012年第2012期|p.150-157|共8页
  • 作者单位

    Department of Computer Science and Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, PR China,College of Mathematics and Computer Science, Hebei University, Baoding 071002, PR China;

    College of Mathematics and Computer Science, Hebei University, Baoding 071002, PR China;

    College of Mathematics and Computer Science, Hebei University, Baoding 071002, PR China;

    College of Mathematics and Computer Science, Hebei University, Baoding 071002, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    dimensionality reduction; face recognition; subspace; diversity; locality preserving projection;

    机译:降维;人脸识别;子空间多样性局部性投影;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号