首页> 外文期刊>Neurocomputing >Neural network-based optimal control of a batch crystallizer
【24h】

Neural network-based optimal control of a batch crystallizer

机译:基于神经网络的间歇结晶器的最优控制

获取原文
获取原文并翻译 | 示例

摘要

In batch crystallization, the control of size and shape distributions of crystal product is known to be a difficult and challenging task. Although various model-based control strategies have been widely implemented, the effectiveness of such the control strategies depends heavily on the exact knowledge of crystallization of which the dynamic behavior is complicated and highly nonlinear. In this study, a neural network-based optimal control was proposed to regulate the batch crystallization of potassium sulfate chosen as a case study. A neural network model of the batch crystallizer was first developed to capture the nonlinear dynamics of crystallization in terms of the solution concentration within the batch crystallizer and the moment variables that relate to a crystal product quality over a prediction horizon. Then, the developed neural network model was incorporated in an optimal control framework to find an optimal operating temperature profile for improving the quality of the crystal product. The simulation results showed that the neural network can predict the final product properties and the optimal control integrated with the developed neural network gives a better control performance compared to a conventional linear cooling control technique.
机译:在间歇结晶中,已知控制晶体产物的尺寸和形状分布是一项困难且具有挑战性的任务。尽管已经广泛实施了各种基于模型的控制策略,但是这种控制策略的有效性在很大程度上取决于结晶的确切知识,其动态行为复杂且高度非线性。在这项研究中,提出了一个基于神经网络的最优控制,以调节作为案例研究选择的硫酸钾的批结晶。首先开发了批处理结晶器的神经网络模型,以捕获批处理结晶器中溶液的浓度以及在预测范围内与晶体产品质量相关的矩变量方面的非线性结晶动力学。然后,将开发的神经网络模型并入最佳控制框架中,以找到最佳的工作温度曲线,以改善晶体产品的质量。仿真结果表明,与传统的线性冷却控制技术相比,该神经网络可以预测最终产品的性能,并且与已开发的神经网络集成的最优控制具有更好的控制性能。

著录项

  • 来源
    《Neurocomputing》 |2012年第2012期|p.158-164|共7页
  • 作者单位

    Department of Chemical Engineering, Faculty of Engineering, Thammasat University, Patumthani 12120, Thailand;

    Department of Chemical Engineering, Faculty of Engineering, Chulahngkom University, Bangkok 10330, Thailand;

    Department of Chemical Engineering, Faculty of Engineering, Chulahngkom University, Bangkok 10330, Thailand,Computational Process Engineering, Chulalongkorn University, Bangkok 10330, Thailand;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    batch crystallization; neural network; optimal control; simulation;

    机译:分批结晶神经网络;最佳控制;模拟;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号