首页> 外文期刊>Neurocomputing >Partial iris feature extraction and recognition based on a new combined directional and rotated directional wavelet filter banks
【24h】

Partial iris feature extraction and recognition based on a new combined directional and rotated directional wavelet filter banks

机译:基于新的方向和旋转方向小波滤波器组合的部分虹膜特征提取和识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel approach to construct two-dimensional (2-D) non-separable, non-redundant, multiscale combined directional wavelet filterbank (CDWFB) for iris feature-extraction. This CDWFB is obtained by the combination of directional wavelet filterbank (DWFB) and rotated directional wavelet filterbank (RDWFB). Firstly, 2-D biorthogonal wavelet filterbank (BWFB) is designed based on the factorization of a general half-band polynomial. Secondly, McClellan transformation is used to obtain checkerboard shaped filterbank (CSFB) using designed BWFB coefficients. This CSFB is applied on 2-D BWFB to obtain DWFB. RDWFB is obtained using DWFB coefficients whose directions are 45° apart from DWFB. Iris recognition systems are still incapable for providing low false rejection and significant representation. In order to address these problems, a novel approach is proposed to extract iris texture in twelve-directions by CDWFB. The inner half-iris region (partial iris) is divided into six non-overlapping sub-regions and selected four-regions for further processing to derive compact and significant iris-features. An independent feature extraction using CDWFB is carried out on each region. The dissimilarity measure of each region are fused at the decision level by exploring 1-out-of-n: Accept (A) post-classifier in order to reduce the false rejection rate. Experimental results using UBIRIS and MMU1 databases show the superiority of the proposed method with some of the popular iris recognition algorithms.
机译:本文提出了一种新颖的方法来构造用于虹膜特征提取的二维(2-D)不可分,非冗余,多尺度组合方向小波滤波器组(CDWFB)。该CDWFB是通过结合方向性小波滤波器组(DWFB)和旋转方向性小波滤波器组(RDWFB)获得的。首先,基于一般半带多项式的因式分解,设计了二维双正交小波滤波器组(BWFB)。其次,使用设计的BWFB系数,使用McClellan变换获得棋盘形滤波器组(CSFB)。将该CSFB应用于2-D BWFB以获得DWFB。使用方向与DWFB分开45°的DWFB系数获得RDWFB。虹膜识别系统仍然无法提供低错误拒绝和有效的表示。为了解决这些问题,提出了一种新颖的方法来通过CDWFB在十二个方向上提取虹膜纹理。内部半虹膜区域(部分虹膜)分为六个不重叠的子区域,并选择了四个区域进行进一步处理,以得出紧凑而重要的虹膜特征。在每个区域上使用CDWFB进行独立的特征提取。通过研究n中的1-,在决策级别上融合每个区域的差异度量:接受(A)后分类器,以降低错误拒绝率。使用UBIRIS和MMU1数据库进行的实验结果表明,该方法与某些流行的虹膜识别算法相比具有优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号