首页> 外文期刊>Neurocomputing >Automatic neural-based pattern classification of motion behaviors in autonomous robots
【24h】

Automatic neural-based pattern classification of motion behaviors in autonomous robots

机译:自主机器人中基于神经的运动行为自动模式分类

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of providing autonomous robots with a system that allows them to classify the motion behavior patterns of groups of robots present in their surroundings. It is a first step in the development of a cognitive model that can detect and understand the events occurring in the environment that are not due to the robot's own actions. The recognition of motion patterns must be achieved from the input data acquired by the robot through its camera during real time operation and, consequently, it can be addressed as a high dimensional dynamic pattern classification problem. Artificial Neural Networks (ANN) have been widely used in this type of classification problems, where a preprocessing stage is typically introduced in order to reduce dimensionality. In this stage, the processing window size and the dimensional transformation parameters must be selected according to specific domain knowledge, and they remain fixed during the ANN classification process. Such an approach is not applicable here as there is no prior information on the number of robots present or the dimensional reduction level required to describe the possible robot motion behaviors. Consequently, this work proposes a hybrid approach based on the application of a classification system called ANPAC (Automatic Neural-based Pattern Classifier) that uses a variable size ANN to perform the classification and an advisor module to adjust the preprocessing parameters and, consequently, the size of the ANN, depending on the learning results of the network. The components and operation of ANPAC are described in depth and illustrated using an example related to the recognition of behavior patterns in the motion of flocks.
机译:本文解决了为自主机器人提供系统的问题,该系统允许他们对周围环境中的机器人组的运动行为模式进行分类。这是开发认知模型的第一步,该认知模型可以检测和了解环境中发生的事件,这些事件不是由于机器人自身的动作引起的。运动模式的识别必须通过机器人在实时操作过程中通过其摄像机获取的输入数据来实现,因此,它可以解决为高维动态模式分类问题。人工神经网络(ANN)已广泛用于此类分类问题,通常会引入预处理阶段以降低维数。在这个阶段,必须根据特定领域的知识选择处理窗口的大小和尺寸转换参数,并且在ANN分类过程中它们保持固定。由于没有关于存在的机器人数量或描述可能的机器人运动行为所需的尺寸减小级别的先验信息,因此此方法在此处不适用。因此,这项工作提出了一种基于称为ANPAC(基于神经网络的自动模式分类器)的分类系统的混合方法,该系统使用可变大小的ANN进行分类,并使用顾问程序模块来调整预处理参数,从而调整预处理参数。人工神经网络的大小,取决于网络的学习结果。 ANPAC的组件和操作将进行深入描述,并使用一个与鸡群运动中行为模式识别有关的示例进行说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号