首页> 外文期刊>Neurocomputing >View independent object classification by exploring scene consistency information for traffic scene surveillance
【24h】

View independent object classification by exploring scene consistency information for traffic scene surveillance

机译:通过探索场景一致性信息来进行交通场景监控,从而查看独立的对象分类

获取原文
获取原文并翻译 | 示例

摘要

We address the problem of view independent object classification. Our aim is to classify moving objects in traffic scenes surveillance videos into pedestrians, bicycles and vehicles. However, this problem is very challenging due to the following aspects. Firstly, regions of interest in videos are of low resolution and limited size due to the capacity of conventional surveillance cameras. Secondly, the intra-class variations are very large due to changes in view angles, lighting conditions and environments. Thirdly, real-time performance of algorithms is always required for real applications. Especially, perspective distortions of surveillance cameras make most 2D object features like size and speed related to view angles and not suitable for object classification. In this paper, we try to explore the hidden information of traffic scenes to deal with perspective distortions of surveillance cameras. Two solutions are given to achieve automatic object classification based on simple motion and shape features on the 2D image plane, both of which are free of large database collection and manually labeling. Abundant experiments of the two methods are conducted in videos of difference scenes and experimental results demonstrate the performance of our approaches.
机译:我们解决了视图无关对象分类的问题。我们的目标是将交通场景监控视频中的移动物体分类为行人,自行车和车辆。然而,由于以下方面,这个问题是非常具有挑战性的。首先,由于常规监视摄像机的容量,视频中的关注区域分辨率低且尺寸有限。其次,由于视角,照明条件和环境的变化,组内变化很大。第三,实际应用中始终需要算法的实时性能。特别是,监视摄像机的透视变形会使大多数2D对象特征(例如与视角相关的大小和速度)变得不适合对象分类。在本文中,我们尝试探索交通场景的隐藏信息,以应对监控摄像机的透视失真。给出了两种解决方案,以基于2D图像平面上的简单运动和形状特征实现自动对象分类,这两种方法都无需大型数据库收集和手动标记。在不同场景的视频中对这两种方法进行了大量的实验,实验结果证明了我们方法的有效性。

著录项

  • 来源
    《Neurocomputing》 |2013年第1期|250-260|共11页
  • 作者单位

    Laboratory of Intelligent Recognition and Image Processing, Beijing Key Laboratory of Digital Media, School of Computer Science and Engineering, Beihang University, Beijing 100191, China;

    National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China;

    Laboratory of Intelligent Recognition and Image Processing, Beijing Key Laboratory of Digital Media, School of Computer Science and Engineering, Beihang University, Beijing 100191, China;

    National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    object classification; visual surveillance; scene division; ground plane rectification; online learning;

    机译:对象分类;视觉监控;场景划分;接地平面整流;在线学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号