首页> 外文期刊>Neurocomputing >Applying posture identifier in designing an adaptive nonlinear predictive controller for nonholonomic mobile robot
【24h】

Applying posture identifier in designing an adaptive nonlinear predictive controller for nonholonomic mobile robot

机译:在非完整移动机器人自适应非线性预测控制器设计中的姿态识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a trajectory tracking controller for a nonholonomic mobile robot using an optimization algorithm based predictive feedback control and an adaptive posture identifier model while following a continuous and a non-continuous path. The posture identifier model is a modified Elman neural network that describes the kinematics and dynamics of the mobile robot model. The feedforward neural controller is trained off-line and its adaptive weights are adapted on-line to find the reference torques, which controls the steady-state outputs of the mobile robot system. The feedback neural controller is based on the posture neural identifier and quadratic performance index prediction algorithm to find the optimal torque action in the transient state for N-step-ahead prediction. General back propagation algorithm is used to learn the feedforward neural controller and the posture neural identifier. Simulation results and experimental work show the effectiveness of the proposed adaptive nonlinear predictive control algorithm; this is demonstrated by the minimized tracking error and the smoothness of the torque control signal obtained, especially with regards to the external disturbance attenuation problem.
机译:本文提出了一种非完整移动机器人的轨迹跟踪控制器,该控制器使用基于优化算法的预测反馈控制和自适应姿态识别器模型,同时遵循连续和不连续的路径。姿势标识符模型是经过修改的Elman神经网络,用于描述移动机器人模型的运动学和动力学。前馈神经控制器离线进行训练,其自适应权重在线进行调整以找到参考扭矩,该参考扭矩控制移动机器人系统的稳态输出。反馈神经控制器基于姿势神经标识符和二次性能指标预测算法,以在瞬态中找到最优扭矩作用,以进行N步超前预测。使用通用的反向传播算法来学习前馈神经控制器和姿势神经标识符。仿真结果和实验工作表明了所提出的自适应非线性预测控制算法的有效性。最小化的跟踪误差和所获得的转矩控制信号的平滑性证明了这一点,尤其是在外部干扰衰减问题方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号